Advertisement

Abstract

Because the manufacture of fluxes is a proprietary formulation business, contents and compositions of the numerous “magic mixes” are necessarily unknown. It is their very proprietary nature that allows the range and variety of fluxes to exist. In this environment, attempts by user companies to determine even which product is best for their application or assembly process seldom reach the level of material differentiation. They are usually simple performance studies evaluated against specific functional performance requirements on a pass-fail or level-of-defect basis [Cassidy and Lin 1981a, b; Lambert 1978]. Attempts to identify important individual flux components and to assess the relative performance of material variants remain largely the perogative of the manufacturers. Soldering flux development is usually achieved by working either within individual internal perceptions of requirements or, more commonly, working with individuals within user companies to solve individual problems related to a specific product, design, and process. By its very nature, such work involves minimal resource and fast response time variants, usually meaning substitution of one component by a simple generic variation of the same class of material. This means that a group of products from a particular manufacturer continues by using the same basic materials types; the products are improved by modifications to formulations, usually within the same generic group of chemicals and based on the same concepts as to performance mechanisms.

Keywords

Differential Scanning Calorimetry Solder Alloy Cupric Oxide Molten Solder Abietic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackroyd, M. L., C. A. MacKay, and C. J. Thwaites, 1975. metals Technol. Feb. 1975. pp. 73–85.Google Scholar
  2. Archer, W. L., and T. D. Cabelka. 1988. Proc. ISHM Conf. Google Scholar
  3. Archer, W. L., T. D. Cabelka, and J. J. Nalazek. 1987. Ass. Eng. Dec. 1987. pp. 20–23.Google Scholar
  4. Archer, W. L., T. D. Cabelka, and J. A. Tromba. 1986. Proc. ISHM Conf. Oct. 1986.Google Scholar
  5. Audette, D. E., and C. A. MacKay. 1981. Proc. Inst. Met. Fin. Conf. London, England. March 1981.Google Scholar
  6. Audette, D. E., and C. A. MacKay. 1982. Circuits Manufacturing May 1982.Google Scholar
  7. Bailey, G. L. J., and H. C. Watkins. 1951. J. Inst. Metals. 19:57–76.Google Scholar
  8. Bircumshaw, L. L. 1926a. Phil. Mag. 2:341.Google Scholar
  9. Bircumshaw, L. L. 1926b. Phil Mag. 3:1286.Google Scholar
  10. Bircumshaw, L. L. 1926c. Phil. Mag. 12:1931.Google Scholar
  11. Bonner, K. 1980. IPC Ann. Mtg. April 1980. IPC TP 323.Google Scholar
  12. Brammer, D. 1991. Circuits Ass. June 1991. pp. 41–5.Google Scholar
  13. Cabelka, T. D., and W. L. Archer. 1985. Proc. ISHM Conf. Oct. 1985. pp. 520–528.Google Scholar
  14. Campbell, W. P. Hercules Powder Company Reports. Google Scholar
  15. Cassidy, M. P., and K. M. Lin. 1981a. Proc. NEPCON West. Anaheim, CA. Feb. 1981.Google Scholar
  16. Cassidy, M. P., and K. M. Lin. 1981b. Electronic Packaging and Production Nov. 1981.Google Scholar
  17. Draht, G., and F. Sauerwald. 1926. Zeit. fur Anorg. und Allegem. Chem. 162:103.Google Scholar
  18. Drummond, C. D., W. M. Wachel, and D. L. Yenowine. 1981. Soldering Conf. Naval Weapons Center. Jan. 1981.Google Scholar
  19. Dunaway, J. B. 1989. Circuits World 15(4).Google Scholar
  20. Dunn, M. H. 1990, Surface Mount Technol. March 1990. pp.40–1.Google Scholar
  21. Feiser, and W. P. Campbell. 1938. J. Amer. Chem. Soc. 60:159.CrossRefGoogle Scholar
  22. Feiser, and Feiser. Biological Resins. Google Scholar
  23. Fleck, E. E., and S. Palkin. 1942. Ind. Eng. Chem. Anal. Eng. 14:146.CrossRefGoogle Scholar
  24. Fodor, P. 1990. Proc. NEPCON East. pp. 179–87.Google Scholar
  25. Fodor, P., and P. J. Lensch. 1990 E. P. and P. April 1990. pp 64–66.Google Scholar
  26. Glasstone, S., and D. Lewin. 1960. Elements of Physical Chemistry. Princeton, NJ: Van Norstrand Reinhold.Google Scholar
  27. Greenway, H. K. 1949. J. Inst. Met. 74:133.Google Scholar
  28. Hagness, Th. R. 1921. J. Amer Chem. Soc. 43:1621. CrossRefGoogle Scholar
  29. Hanaway, E., L. Hagerty, and R. Crothers. E. P. and P. 31(11): 118–20.Google Scholar
  30. Harris, G. C. 1948. J. Amer Chem. Soc. 70:3674.CrossRefGoogle Scholar
  31. Harris, G. C. 1952. Wood Resins. Amer. Chem. Soc. Reinhold Press.Google Scholar
  32. Harris, G. C, and T. F. Sanderson. 1948a. J. Amer Chem. Soc. 70(1):334.CrossRefGoogle Scholar
  33. Harris, G. C, and T. F. Sanderson. 1948b. J. Amer Chem. Soc. 70:2079, 2081, 3870.Google Scholar
  34. Harris, G. C., and J. Sparks. 1948. J. Amer Chem. Soc. 70:3674.CrossRefGoogle Scholar
  35. Hartman, H. J. 1991. Circuits Ass. Jan 1991. pp.60–65.Google Scholar
  36. Henry, J. J., and N. S. Girouard. 1990. Proc. Intl. Conf. on Flux Technology.Google Scholar
  37. Pittsburgh, PA.: Mellon Inst. Sept. 1990. Also: IPC TP 886.Google Scholar
  38. Hiatt, B., G. Jordhamo, P. J. Singh, and C. A. MacKay. 1991. Proc. ASM Microelectronics Packaging, Materials, and Processes Conf. Montreal, Canada.Google Scholar
  39. Howie, F. A., and E. D. Hondros. 1982. J. Mat. Sci. 17:1434.CrossRefGoogle Scholar
  40. Ivankovits, J. C, and S. W. Jacobs. 1990. Proc. NEPCON East pp. 629–48.Google Scholar
  41. Johnson, C. J., and J. Kevra. 1989. Solder Paste Technology: Principles and Applications Blue Ridge Summit, PA: TAB Books.Google Scholar
  42. Kaier, R. J. 1983. IPC Ann. Mtg. April 1983. IPB TP 468.Google Scholar
  43. Kawakatsu, I., and K. Yokoi. 1990 Proc. 8th IEMT Int’l Electronics Manufacturing Conf. May 1990.Google Scholar
  44. Kenyon, W. G., and D. A. Emig. 1987. Proc. China Lake Conf. China Lake, CA. Wilmington, DE: E I Dupont de Nemours Co. NWC TP 6789; IPC 719.Google Scholar
  45. Klein-Wassink, R. J. 1989. Soldering in Electronics Ayr, Scotland: Electrochem Publishers.Google Scholar
  46. Klima, R. F., and H. Magid. 1987. Proc. NEPCON West pp. 736–46.Google Scholar
  47. Klyachko, and Kunin. 1949. Dokl. Akad. Nauk. SSSR. 64:85.Google Scholar
  48. Kocka, D. C. 1990. Electronics Packaging and Prod. Google Scholar
  49. Lambert, L. 1978. Proc. NEPCON West Anaheim, CA. Feb. 1978. p. 75.Google Scholar
  50. Langan, J. P. Proc. 3rd Int’l SAMPE Electronics Conf. Google Scholar
  51. Latin, A. 1938. Trans. Faraday Soc. 34:1384–395.CrossRefGoogle Scholar
  52. Lovering, D. G. 1984. Brazing and Soldering No. 7 (Autumn).Google Scholar
  53. Mackay, C. A. 1977. Tin Research Inst. Report. Google Scholar
  54. Mackay, C. A. 1980a. Electronic Packaging and Production. Feb. 1980. pp. 116–26.Google Scholar
  55. Mackay, C. A. 1980b. Proc. INTERNEPCON Intl. Electronic Packaging Conf. Brighton, England. Oct. 1980.Google Scholar
  56. Mackay, C. A. 1989. Proc. ASM Microelectronic Pkg. Tech. Conf. Philadelphia, PA. April 1989. pp. 405–718.Google Scholar
  57. MacKay, D. 1970. Proc. INTERNEPCON Conf. Brighton, England, p. 11.Google Scholar
  58. Matuyama. 1927. SCi Reps. Tokyo Univ. 16:555.Google Scholar
  59. Mehta, A., S. Adams, J. Keegan, and J. Savage. 1991. Proc. NEPCON East pp. 481–90.Google Scholar
  60. Momose, Y., and Y. Tamia. 1970. JAM. 93.Google Scholar
  61. Morris, J. R., and N. Bandyopadhyay. 1990. Print. Circ. Ass. 4(2):26–31.Google Scholar
  62. Moskowitz, P. A., H. L. Yen, and S. K. Ray. 1986. J. Vac. Sci. Technol. A4, p. 838.Google Scholar
  63. Nakajima, M. 1991. J.E.E. 28:N292.Google Scholar
  64. Ohki, K. 1991. JEEE. April 1991.Google Scholar
  65. Okano, T. 1991. JEEE. Oct. 1991.Google Scholar
  66. Onishi, J., I. Okamoto, and A. Omori. 1972. Trans. Japan Welding Inst. 1(1):23–7.Google Scholar
  67. Onishi, J., I. Okamoto, and A. Omori. 1973a. Trans. Japan Welding Inst. 2(1): 113–19.Google Scholar
  68. Onishi, J., I. Okamoto, and A. Omori. 1973b. Trans. Japan Welding Inst. 2(2):97–102; 103–10.Google Scholar
  69. Onishi, J., I. Okamoto, and A. Omori. 1974. Trans. Japan Welding Inst. 3(1):99–103; 105–09.Google Scholar
  70. Onishi, J., I. Okamoto, and A. Omori. 1975. Trans. Japan Welding Inst. 4(l):79–84; 85–90.Google Scholar
  71. Ostrander, M., K-L Wun, and J. Baker.Google Scholar
  72. Palkin, S., and G. C. Harris. 1933. J. Amer. Chem. Soc. 55:3677.CrossRefGoogle Scholar
  73. Pickering, K., P. Southworth, C. Wort, A. Parsons, and D. J. Pedder.Google Scholar
  74. Pokrovskii, and Galanina. 1949. Zh. Fiz. Khim. 23:324.Google Scholar
  75. Pokrovskii, and Saidov. 1955. Zh. fiz. Khim. 29:1601.Google Scholar
  76. Pokrovskii, and Sosnina. 1950. Dokl. Akad. Nauk. SSSR. 86:1105.Google Scholar
  77. Roche, N. G., and C. A. MacKay. 1989. Proc. ASM Microelectronics Packaging, Materials, and Processes Conf. Philadelphia, PA. April 1989.Google Scholar
  78. Rubin, W. 1982. Welding Journal. Oct. 1982. p. 39.Google Scholar
  79. Rubin, W. 1990. Electronic Production May 1990.Google Scholar
  80. Rubin, W., and M. Warwick. 1990. Surface Mount Technology. Oct. 1990.Google Scholar
  81. Ruzicka, and J. Meyer. 1922. Helv. Chim. Acta 5:315.CrossRefGoogle Scholar
  82. Ruzicka, and Sternbach. 1940. Helv. Chim. Acta 23:333.CrossRefGoogle Scholar
  83. Ruzicka and Waldmann. 1933. Helv. Chim. Acta 16:842.CrossRefGoogle Scholar
  84. Schouten, G. 1989. Circuits Man. Sept. 1989. pp. 50–53.Google Scholar
  85. Semenchenko. 1961. Surface Phenomena in Metal Alloys Trans. from the original Russian, Poverkhnostyye Yavleniya v Metallaakh i Splavakh Oxford: Pergamon Press Ltd.Google Scholar
  86. Semenchenko, Pokrovskii, and Lazarev. 1953. Dokl. Akad. Nauk. SSSR. 89:102.Google Scholar
  87. Sherman, K., and C. A. MacKay. 1989. Proc. ASM Microelectronics Pkg. Tech. Conf. Philadelphia, PA. April 1989.Google Scholar
  88. Sinclair J. D., et al. 1985. J. IEEE. Google Scholar
  89. Snyder, R. W. 1987. Applied Spectroscopy. 14(3):460–63.CrossRefGoogle Scholar
  90. Trovato, R. 1990. Circuits Man. April 1990. pp. 66–7.Google Scholar
  91. Turkdogan, E. T., and S. Zador. 1961. J. Iron and Steel Inst. March 1961. pp. 233–39.Google Scholar
  92. Wallis, D. R. 1974. Metallurgist Jan. 1974. p. 15.Google Scholar

Copyright information

© Van Nostrand Reinhold 1993

Authors and Affiliations

  • Colin A. MacKay
    • 1
  1. 1.MCCAustinUSA

Personalised recommendations