Primary and Secondary Proton Pumps

  • Paul H. J. Nederkoorn
  • Henk Timmerman
  • Gabriëlle M. Donné-Op den Kelder
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Primary pups differ highly depending upon the energy source used by the membrane. For example, the respiratory chains of mammalian mitochondria act as oxidation-reduction driven proton pumps, which transfer electrons from the NAD+/NADH couple to the O2/H2O couple. The respiratory chain consists of more than 20 discrete carriers of electrons which are mainly grouped into four polypeptide complexes: NADH-ubiquinone oxidoreductase, succinate dehydrogenase, ubiquinol-cytochrome c oxido-reductase and cytochrome c oxidase. Three of these complexes are involved in proton translocation.


Schiff Base Proton Translocation Noncatalytic Site Protonmotive Force Primary Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Timms D Wilkinson AJ, Kelly DR et al. Interactions of Tyr377 in a ligand-activation model of signal transmission through β1adrenoceptor α-helices. Int J Quant Chem: Quant Biol Symp 1992; 19:197–215.CrossRefGoogle Scholar
  2. 2.
    Timms D Wilkinson AJ, Kelly DR et al. Ligand-activated transmembrane proton transfer in β1adrenergic and m2-muscarinergic receptors. Receptors and Channels 1994; 2:107–119.PubMedGoogle Scholar
  3. 3.
    Samama, Cotecchia S, Costa T et al. A mutation-induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 1993; 268:4625–4636.PubMedGoogle Scholar
  4. 4.
    Hoflack J, Trumpp-Kallmeyer S, Hibert M. Re-evaluation of bacteriorhodopsin as a model for G protein-coupled receptors. Trends Pharmacol Sci 1994; 15:7–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Hendersn R, Baldwin JM, Ceska TA et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 1990; 213:899–929.CrossRefGoogle Scholar
  6. 6.
    Dencher NA, Biildt G, Heberle J et al. Light-triggered opening and closing of a hydrophobic gate controls vectorial proton transfer across bacteriorhodopsin. NATO ASI Ser, Ser B 1992; 291:171–185.CrossRefGoogle Scholar
  7. 7.
    McMahon HT, Nicholls DG. The bioenergetics of neurotransmitter release. Biochim Biophys Acta 1991; 1059:243–264.PubMedCrossRefGoogle Scholar
  8. 8.
    Njus D, Kelly PM, Harnadek GJ. Bioenergetics of secretory vesicles. Biochim Biophys Acta 1986; 853:237–265.PubMedCrossRefGoogle Scholar
  9. 9.
    Pederse PL, Amzel LM. ATP synthases. Structure, reaction center, mechanism, and regulation of nature’s most unique machines. J Biol Chem 1993; 268:9937–9940.Google Scholar
  10. 10.
    Pedersn PL, Schwerzmann K, Cintron N. Regulation of the synthesis and hydrolysis of ATP in biological systems: Role of peptide inhibitors of proton-ATPases. Curr Top Bioenerg 1981; 11:149–199.Google Scholar
  11. 11.
    Tonomur Y. F1-ATPase. In: Energy-transducing ATPases—structure and kinetics. Avon: Cambridge University Press, 1986:141–183.Google Scholar
  12. 12.
    Abrahas JP, Leslie AGW, Lutter R et al. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 1994; 370:621–628.CrossRefGoogle Scholar
  13. 13.
    Penefsy HS, Cross RL. Structure and mechanism of F0F1-type ATP synthases and ATPases. Adv Enzymol 1991; 64:173–214.Google Scholar
  14. 14.
    Xue Z, Boyer PD. Modulation of the GTPase activity of the chlo-roplast F1-ATPase by ATP binding at noncatalytic sites. Eur J Biochem 1989; 179:677–681.PubMedCrossRefGoogle Scholar
  15. 15.
    Boyer D. A perspective of the binding change mechanism for ATP synthesis. FASEB J 1989; 3:2164–2178.PubMedGoogle Scholar
  16. 16.
    Nichols DG, Ferguson SJ. In: Bioenergetics 2. London: Academic Press, 1992.Google Scholar
  17. 17.
    Mitchel P. A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatases. FEBS Lett 1974; 43:189–194.CrossRefGoogle Scholar
  18. 18.
    Mitchel P. Biochemical mechanism of protonmotivated phosphorylation in F0-F1 adenosine triphosphate molecules. In: Lee CP, Schatze G, Dallner G, eds. Mitochondria and Microsomes. Reading: Addison Wesley, 1981:427–457.Google Scholar
  19. 19.
    Morowiz HJ. Proton semiconductors and energy transduction in biological systems. Am J Physiol 1978; 235:R99–R114.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Paul H. J. Nederkoorn
    • 1
  • Henk Timmerman
    • 1
  • Gabriëlle M. Donné-Op den Kelder
    • 1
  1. 1.Leiden/Amsterdam Center for Drug ResearchAmsterdamThe Netherlands

Personalised recommendations