Skip to main content

Abstract

The narrow definition of bioenergetics comprises the mechanism by which the energy made available by the oxidation of substrates, or by the absorption of light, is coupled to ‘uphill’ reactions such as the synthesis of ATP from ADP and Pi A broader definition also comprises transport processes. The largest part of ATP synthesis is associated with membrane-bound enzyme complexes found in the plasma membranes of prokaryotes, the inner membrane o mitochondria and the thylakoid membrane of chloroplasts. Despite the different natures of their primary energy sources, these membranes, so-called energy-transducing membranes, have a related evolutionary origin which makes them the core of bioenergetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nicholl DG, Ferguson SJ. In: Bioenergetics 2. Londom: Academic Press, 1992.

    Google Scholar 

  2. Boyer P. A perspective of the binding change mechanism for ATP synthesis. FASEB J 1989; 3:2164–2178.

    PubMed  CAS  Google Scholar 

  3. Pederse PL, Amzel LM. ATP synthases. Structure, reaction center, mechanism, and regulation of nature’s most unique machines. J Biol Chem 1993; 268:9937–9940.

    Google Scholar 

  4. Penefsk HS, Cross RL. Structure and mechanism of F0F1-type ATP synthases and ATPases. Adv Enzymol 1991; 64:173–214.

    Google Scholar 

  5. Tonomur Y. F1-ATPase. In: Energy-transducing ATPases—Structure and kinetics. Avon: Cambridge University Press, 1986:141–183.

    Google Scholar 

  6. Hendersn R, Baldwin JM, Ceska TA et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryomicroscopy. J Mol Biol 1990; 213:899–929.

    Article  Google Scholar 

  7. Dencher NA, Biildt G, Heberle J et al. Light-triggered opening and closing of a hydrophobic gate controls vectorial proton transfer across bacteriorhodopsin. NATO ASI Ser, Ser B 1992; 291:171–185.

    Article  CAS  Google Scholar 

  8. Nederkorn PHJ, Timmerman H, Donné-Op den Kelder GM. Does the ternary complex act as a secondary proton pump and a GTP synthase? Trends Pharmacol Sci 1995; 16:156–161.

    Article  Google Scholar 

  9. Krab K, van Wezel J. Improved derivation of phosphate potentials at different temperatures. Biochim Biophys Acta 1992; 1098:172–176.

    Article  CAS  Google Scholar 

  10. Slater EC, Rosing J, Mol A. The phosphorylation potential generated by respiring mitochondria. Biochim Biophys Acta 1973; 292:534–553.

    Article  PubMed  CAS  Google Scholar 

  11. Morowiz HJ. Proton semiconductors and energy transduction in biological systems. Am J Physiol 1978; 235:R99–R114.

    Google Scholar 

  12. Nagle F, Tristram-Nagle S. Hydrogen bonded chain mechanisms for proton conduction and proton pumping. J Membrane Biol 1983; 74:1–14.

    Article  CAS  Google Scholar 

  13. Nagle F, Morowitz HJ. Molecular mechanisms for proton transport in membranes. Proc Natl Acad Sci USA 1978; 75:298–302.

    Article  PubMed  CAS  Google Scholar 

  14. Iwata, S, Ostermeier C, Ludwig B et al. H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus Denitrificans. Nature 1995; 376:660–669.

    Article  PubMed  CAS  Google Scholar 

  15. Willias RJP. Purpose of proton pathways. Nature 1995; 376:643.

    Article  Google Scholar 

  16. Deamer DW, Nichols JW. Proton flux mechanisms in model and biological membranes. J Membrane Biol 1989; 107:91–103.

    Article  CAS  Google Scholar 

  17. Onsage L. In: Whalley E, Jones SJ, Gold LW, eds. Physics and Chemistry of Ice. Ottawa: Royal Society, 1973; 7–12.

    Google Scholar 

  18. Robinsn RA, Stokes RH. In: Electrolyte solutions. 2nd ed. London: Butterworths, 1970.

    Google Scholar 

  19. Nagle F, Mille M. Molecular models of proton pumps. J Chem Phys 1981; 74:1367–137.

    Article  CAS  Google Scholar 

  20. Nagle F, Mille M, Morowitz HJ. Theory of hydrogen bonded chains in bioenergetics. J Phys Chem 1980; 72:3959–3971.

    Article  CAS  Google Scholar 

  21. Heberl J, Riesle J, Thiedemann G et al. Proton migation along the membrane surface and retarded surface to bulk transfer. Nature 1994; 370:379–382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nederkoorn, P.H.J., Timmerman, H., den Kelder, G.M.DO. (1997). Bioenergetics. In: Signal Transduction by G Protein-Coupled Receptors. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1407-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1407-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1409-7

  • Online ISBN: 978-1-4684-1407-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics