Dendritic Solidification of Rare Gases

  • J. H. Bilgram
  • E. Hürlimann
Part of the NATO ASI Series book series (NSSB, volume 276)


Rare gases Kr and Xe have been used to study dendritic solidification of a pure melt. The advantages of using single component systems in comparison to solution systems are: short relaxation times and good repro-ducibility. The parameters characterizing the shapes of the dendrite tips have been determined. The volume solidification rate of dendrites increases with increasing supercooling of the melt, thus the stability-“constant” decreases with increasing supercooling. The volume of dendrites V has been determined as a function of the length L of the dendrite. V ∝ L3. The average density of a dendrite V/L3 is independent of L, dendrites are no fractals. V/L3 decreases with increasing supercooling. A model is presented, which describes the volume of the dendrites.


Xenon Librium Supersaturation Krypton Succinonitrile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.H. Bilgram, Phys. Reports 153, 1 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    J.H. Bilgram and R. Steininger, J. Cryst. Growth 99, 30 (1990)ADSCrossRefGoogle Scholar
  3. R. Steininger and J.H. Bilgram, J. Cryst. Growth.Google Scholar
  4. 3.
    S.-C. Huang and M.E. Glicksman, Acta Met. 29, 701 (1981)CrossRefGoogle Scholar
  5. 4.
    M.E. Glicksman and N.B. Singh, J. Cryst. Growth 98, 277 (1989)ADSCrossRefGoogle Scholar
  6. 5.
    J.S. Langer, Rev. Mod. Phys. 52, 1 (1980)ADSCrossRefGoogle Scholar
  7. 6.
    J.S. Langer, Lectures in the theory of pattern formation, in: Chance and Matter, Proc. Les Houches Summer School, Session XLVI, 1986, Eds. J. Souletie, J. Vannimenus and R. Stora North-Holland, Amsterdam, 1987Google Scholar
  8. 7.
    Theory of dendritic solidification is covered by other papers of this conferenceGoogle Scholar
  9. 8.
    R. Trivedi and J.T. Mason, Met. Trans. in pressGoogle Scholar
  10. 9.
    G.P. Ivantsov, in: Growth of Crystals, Vol. 1 Eds.: A.V. Shubnikov and N.N. Sheftal (Consultants Bureau, New York, 1958) p. 76Google Scholar
  11. 10.
    G. Horvay and J.W. Cahn, Acta Met. 9, 695(1961)CrossRefGoogle Scholar
  12. 11.
    J.H. Bilgram, M. Firmann and E. Hürlimann, J. Cryst. Growth 96,175(1989)ADSCrossRefGoogle Scholar
  13. 12.
    J.H. Bilgram and E. Hürlimann, Proc. VIIth European Symp. on materials and fluid sciences in microgravity, ESA SP-295,173(1990)Google Scholar
  14. 13.
    E. Hürlimann, R, Trittibach and J.H. Bilgram, Helv. Phys. Acta 63,473 (1990)Google Scholar
  15. 14.
    E. Hürlimann and J.H. Bilgram, this conferenceGoogle Scholar
  16. 15.
    R. Willnecker, D.M. Herlach and B. Feuerbacher, Phys. Rev. Lett. 62 2707(1989)ADSCrossRefGoogle Scholar
  17. 16.
    P. Bouissou, B. Perrin, and P. Tabeling, Phys. Rev. A 40,509(1989)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. H. Bilgram
    • 1
  • E. Hürlimann
    • 1
  1. 1.Laboratorium für FestkörperphysikETHZürichSwitzerland

Personalised recommendations