Skip to main content

Why Nature makes Fractals

  • Chapter
  • 215 Accesses

Part of the book series: NATO ASI Series ((NSSB,volume 276))

Abstract

The concept of fractal geometry allows to look at nature in a new perspective and to consider irregularities as intrinsic entities. The main problem in this field is to understand the microscopic origin of these structures. The first step in this direction is to formulate models of fractal growth based on physical processes. This has been achieved since a few years. In addition one should be able to formulate a theory of fractal growth analogous to the Renormalization Group for critical phenomena. The attempts to apply RG methods to fractal growth turned out to be rather problematic. Recently we have introduced a new theoretical framework based on a Fixed Scale Transformation that exploits also a different invariance property than RG. This new method allows to understand the origin of fractal properties in these models and to compute analytically the value of the fractal dimension. In this paper we present a critical discussion of the field and point out the main open problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.B. Mandelbrot, “The Fractal Geometry of nature”, Freeman, New York (1982).

    MATH  Google Scholar 

  2. L. Pietronero and E. Tosatti, “Fractals in Physics”, North-Holland, Amsterdam, New York (1986).

    Google Scholar 

  3. L. Pietronero, “Fractals’ Physical Origin and Properties”, Plenum Publ., New York-London (1989).

    Google Scholar 

  4. L. Pietronero, Physica A 144, 257 (1987)

    Article  ADS  MATH  Google Scholar 

  5. P.H. Coleman, L. Pietronero and R.H. Sanders, Astron. and Astrophys. 200, L32 (1988).

    ADS  Google Scholar 

  6. T.A. Witten and L.M. Sander, Phys.Rev.Lett. 47, 1400 (1981).

    Article  ADS  Google Scholar 

  7. L. Niemeyer, L. Pietronero and H.J. Wiesmann, Phys.Rev.Lett., 52, 1038 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  8. See e. g. D.J. Amit, “Field Theory, the Renormalization Group and Critical Phenomena”, McGraw-Hill, New York (1978).

    Google Scholar 

  9. H.E. Stanley, Phil. Mag. B 56, 665 (1987).

    Article  Google Scholar 

  10. C. Evertsz, Phys.Rev.B 41, 1830 (1990).

    ADS  Google Scholar 

  11. C. Evetsz, Ph.D. Thesis, University of Groningen, The Netherlands (1989).

    Google Scholar 

  12. P. Meakin and S. Tolman, in Ref.(3), p. 137.

    Google Scholar 

  13. A. Arneodo, Y. Conder, G. Grasseau, V. Hakin and M. Rabaud, Phys.Rev.Lett. 63, 984 (1989).

    Article  ADS  Google Scholar 

  14. R.C. Ball and T.A. Witten, Phys.Rev. A 29, 2966 (1984).

    Article  ADS  Google Scholar 

  15. G. Paladin and A. Vulpiani, Phys.Reps 156, 145 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  16. L. Pietronero and A.P. Siebesma, Phys.Rev.Lett. 57, 1098 (1986).

    Article  ADS  Google Scholar 

  17. A. Coniglio, C. Amitrano and F. Di Liberto, Phys.Rev.Lett. 57, 1016 (1986).

    Article  ADS  Google Scholar 

  18. T. Bohr, P. Cvitanovic and M.H. Jensen, Europhys. Lett. 6, 445 (1988).

    Article  ADS  Google Scholar 

  19. R. Blumenfeld and A. Aharony, Phys.Rev.Lett. 62, 2927 (1989).

    ADS  Google Scholar 

  20. S. Schwarzer, J. Lee, A. Bunde, S. Havlin, H.E. Roman and H.E. Stanley, Phys.Rev.Lett. 65, 603 (1990).

    Article  ADS  Google Scholar 

  21. B.B. Mandelbrot and C.J.G. Evertsz, Nature 348, 143 (1990).

    Article  ADS  Google Scholar 

  22. M. Marsili and L. Pietronero, preprint.

    Google Scholar 

  23. M. Plischke and Z. Racz, Phys.Rev.Lett. 53, 415 (1984).

    Article  ADS  Google Scholar 

  24. T. Nagatani, J.Phys.A 20, L381 (1987); Phys.Rev.A 36 5812 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  25. L. Pietronero, A. Erzan and C. Evertsz, Physica A 151, 207 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. L. Pietronero, A. Erzan and C. Evertsz, Phys.Rev.Lett. 61, 861 (1988).

    Article  ADS  Google Scholar 

  27. R.R. Tremblay and A.P. Siebesma, Phys.Rev.A 40, 5377 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Vespignani and L. Pietronero, Physica A 168, 723 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Vespignani and L. Pietronero, Physica A, in print.

    Google Scholar 

  30. L. Pietronero, W.R. Schneider and A. Stella, Phys.Rev.B, Rapid Comm., Nov. 15

    Google Scholar 

  31. L. Pietronero and A. Stella, Physica A (1990), in print

    Google Scholar 

  32. L. Pietronero and W.R. Schneider, Physica A (1990), in print.

    Google Scholar 

  33. A. Erzan and L. Pietronero, J.Phys.A, in print.

    Google Scholar 

  34. L.Pietronero and W.R.Schneider, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Pietronero, L. (1991). Why Nature makes Fractals. In: Amar, M.B., Pelcé, P., Tabeling, P. (eds) Growth and Form. NATO ASI Series, vol 276. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1357-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1357-1_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1359-5

  • Online ISBN: 978-1-4684-1357-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics