Towards Chemical Control of Gene Expression: Copper (II) and Thiols, Including Glutathione, are Powerful Reagents for Cleavage of DNA

  • Kenneth T. Douglas
  • David C. A. John
  • Celia J. Reed
Part of the NATO ASI Series book series (NSSA, volume 207)


Sequence-specific cleavage of DNA has many applications in molecular biology, but is limited by the specificities and accessibility of natural restriction endonucleases1. One approach to overcoming this has been to chemically modify a DNA-recognising molecule with a reagent capable of chemical cleavage of DNA. The most commonly used reagent for such chemical cleavage is probably the EDTA:Fe (II) system (1) which has been attached to oligonucleotides1,2, intercalators3, and to a combination of these binding-species4. Minor-groove directed drugs5 and antisense oligodeoxyribonucleoside methylphosphonates6 have joined the catalogue. The other commonly used chemical cleavage systems include bis (1,10- phenanthroline) :Cu (I) (2)7–9 porphyrin metal complexes (3)10–13, and rhodium complexes14. Photochemical cleaving systems for DNA have also been described15–19.


Sequence Preference Linear Fragment Chemical Cleavage Molecular Biological Tool pSP64 Plasmid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.B. Dreyer and P.B. Dervan, Proc. Natl. Acad. Sci. (U.S.A.) 82: 968–72 (1985).CrossRefGoogle Scholar
  2. 2.
    A.S. Boutorin, V.V. Vlassov, S.A. Kazakov, I.V. Kutiavin, and M.A. Podyminogin, FEBS Lett. 172: 43–46 (1984).CrossRefGoogle Scholar
  3. 3.
    R.P. Hertzberg, and P.B. Dervan, Biochemistry, 23: 3934–45 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Boidet-Forget, M. Chassignol, M. Takasugi, N.T. Thuong, and C. Hélène, Gene 72: 361–71 (1988).CrossRefGoogle Scholar
  5. 5.
    J.S. Taylor, P.G. Schultz, and P.B. Dervan, Tetrahedron, 40: 457– 465 (1984).CrossRefGoogle Scholar
  6. 6.
    S-B. Lin, K.R. Blake, P.S. Miller, and P.O.P. Ts’O, Biochemistry, 28: 1054–61 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Spassky, and D.S. Sigman, (1985) Biochemistry 24: 8050–56 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    B.F. Chu, and L.E. Orgel, Proc. Natl. Acad. Sci. (U.S.A.) 82: 963–967 (1985).CrossRefGoogle Scholar
  9. 9.
    J-C. Francois, T. Saison-Behmoaras, M. Chassignol, N.T. Thuong, and C. Hélène, J. Biol. Chem. 264: 5891–98 (1989).PubMedGoogle Scholar
  10. 10.
    J.W. Lown, and A.V. Joshua, J. Chem. Soc. Chem. Commun. 1298–1300 (1982).Google Scholar
  11. 11.
    J.W. Lown, S.M. Sondhi, C-W. Ong, A. Skorobogaty, H. Kishikawa, and J.C. Dabriowak, Biochemistry 25: 5111–17 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    J. Bernadou, B. Lauretta, G. Pratviel, and B. Meunier, Compt. Rend. Acad. Sci. (Paris) 309: III, 409–414 (1989).Google Scholar
  13. 13.
    J.T. Groves, and T.P. Farrell, J. Amer. Chem. Soc. 111: 4998–5000 (1989).CrossRefGoogle Scholar
  14. 14.
    K. Uchida, A.M. Pyle, T. Morii, and J.K. Barton, Nucl. Acids Res., 17: 10259–279 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    I. Saito, T. Mori, T. Obayishi, T. Sera, H. Sugiyama, and T. Matsuura, J. Chem. Soc. Chem. Commun. 360–362 (1989).Google Scholar
  16. 16.
    C. Jeppesen, and P.E. Nielsen, Eur. J. Biochem. 182: 437–444 (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    C. Jeppesen, O. Buchardt, U. Henriksen, and P.E. Nielsen, Nucl. Acids Res. 16: 5755–5770 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    L.Z. Benimetskaya, N.V. Bulychev, A.L. Kozionov, A.A. Koshkin, A.V. Lebedev, S. Novozhilov, M.I. Yu & Stockman, Biopolymers, 28: 1129– 1147 (1989).PubMedCrossRefGoogle Scholar
  19. 19.
    T.L. Doan, L. Perrouault, D. Praseuth, N. Habhoub, J.-L. Decout., N.T. Thuong, J. Lehomme, and C. Hélène, Nucl. Acids Res. 15: 7749–7760 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    J-L. Sagripanti, and K.H. Kraemar, J. Biol. Chem. 264: 1729–1734 (1989).PubMedGoogle Scholar
  21. 21.
    K. Yamamoto, S. Inoue, A. Yamazaki, T. Yoshinaga, and S. Kawanishi, Chem. Res. Toxicol. 2: 234–239 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    R.B. Meyer, Jr. J.C. Tabone, G-D. Hurst, T.M. Smith, and H. Gamper, J. Am. Chem. Soc. 111: 8517–8519 (1989).CrossRefGoogle Scholar
  23. 23.
    C.J. Reed, and K.T. Douglas, Biochem. Biophys. Res. Commun. 162: 1111–1117 (1989).PubMedCrossRefGoogle Scholar
  24. 24.
    D.C.A. John, and K.T. Douglas, Biochem. Biophys. Res. Commun. 165: 1235–1242 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kenneth T. Douglas
    • 1
  • David C. A. John
    • 1
  • Celia J. Reed
    • 2
  1. 1.Department of PharmacyUniversity of ManchesterManchesterUK
  2. 2.School of Natural SciencesThe Liverpool PolytechnicLiverpoolUK

Personalised recommendations