Synthesis of Homochiral Pharmaceuticals using Effective Enantioselective Biocatalysts

  • H. J. Kooreman
  • J. H. G. M Mutsaers
Part of the NATO ASI Series book series (NSSA, volume 207)


Scientists, both in academia and industry, as well as regulatory authorities become more and more aware of the importance of enantioselectivity in drug innovation. About 25% of the medicines used to-day are racemic mixtures. The therapeutic activity nearly always resides in one of the isomers (the so-called eutomer), while the other isomer (distomer) can have an unwanted interaction with the human body; at best the distomer is a metabolic burden. Essentially the same holds true for other interactions between synthetic organic compounds and biological systems e.g. the impact of agrochemicals on ecosystems.


Propionic Acid Racemic Mixture Tiaprofenic Acid High Substrate Concentration Glyceric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Hubschwerken, Synthesis, 1986, 962 and references therein.Google Scholar
  2. 2.
    D. Y. Jackson, Synth. Commun. 18, 337 (1988) and references therein.CrossRefGoogle Scholar
  3. 3.
    H. J. Kooreman, in: Trends in Drug Research (V. Claassen, Ed.) 401–412, Elsevier.Google Scholar
  4. 4.
    Gist-brocades nv, Patent application filed; to be published.Google Scholar
  5. 5.
    W. J. H. van den Tweel et al, 5th Eur. Congress on Biotechnology, Copenhagen, 1990, Abstract Book, p. 283.Google Scholar
  6. 6a.
    J. Jurczak, S. Pikul and T. Bauer, Tetrahedron, 42, 447 (1986), and references therein.CrossRefGoogle Scholar
  7. 6b.
    S. Takano, Y. Iwabuchi and K. Ogasawara, J. Chem. Soc. Chem. Commun., 1527, (1988).Google Scholar
  8. 6c.
    Modern Synthetic Methods, vol. 2, p. 241, 1980.Google Scholar
  9. 6d.
    M. Yodo, Y. Matsushita, E. Ohsugi and H. Harada Chem. Pharm. Bull, 36, 902, (1988).CrossRefGoogle Scholar
  10. 7a.
    G. Hirth, R. Barner, Helv. Chim. Acta, 65, 1059, (1982).CrossRefGoogle Scholar
  11. 7b.
    J. H. van Boon, Synthesis, 5, 399, (1982).Google Scholar
  12. 7c.
    A. Holly, Coll. Czech. Chem. Comm., 43, 3103, (1978).Google Scholar
  13. 7d.
    P. Dostert, M. Langlois, P. Geurret, J. F. Ancher, B. Bucher and G. Mocquet, Eur. J. Med. Chem., 15, 199, (1980).Google Scholar
  14. 8.
    G. Geisslinger et al, Eur. J. Clin. Pharmacol. 38, 493 (1990).PubMedCrossRefGoogle Scholar
  15. 9.
    C. J. Sih et al, A facile enzymatic resolution for the preparation of (+)-S-2-(6-methoxy-2-naphthyl) propionic acid (Naproxen), Tetrahedron Letters, vol. 27 no. 16; 1763–1766 (1986).CrossRefGoogle Scholar
  16. 10.
    W. J. Quax et al, Molecular cloning of stereoselective esterase from Bacillus species, Proceedings 4th European Congress on Biotechnology, 1987; volume 1: 519.Google Scholar
  17. 11.
    Gist-brocades nv, patent application filed; to be published.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • H. J. Kooreman
    • 1
  • J. H. G. M Mutsaers
    • 2
  1. 1.International Bio-Synthetics B.VRijswijkThe Netherlands
  2. 2.Gist-brocades nv R&D DepartmentDelftThe Netherlands

Personalised recommendations