Spin Memory of Photocreated Carriers in Quantum Wells in High Magnetic Fields

  • J. C. Maan
  • M. Potemski
  • A. Fasolino
  • K. Ploog
  • G. Weimann
Part of the NATO ASI Series book series (NSSB, volume 253)

Abstract

Spin relaxation of photocreated carriers in GaAs/GaAlAs quantum wells in high magnetic fields is investigated by luminescence experiments under selective optical excitation. The complete quantization of the two-dimensional energy structure in high magnetic fields implies a simultaneous exchange of energy and momentum for spin relaxation and makes spin conserving relaxation processes, both in thermalization and recombination, much faster than spin-flip processes. This results in a new spectroscopic tool to identify magneto excitonic states with the same electronic spin orientation. We apply this technique to study the zero field splitting of the heavy hole exciton ground state often observed in high quality GaAs/GaAlAs quantum wells. We find that each peak of this doublet splits in a magnetic field into two components, and using the selective relaxation we can attribute the conduction band spin character to each of these. It turns out that the ordering of the electron spins of the Zeeman splitting of the upper component of the doublet is inverted with respect to that of the lower component. This observation strongly suggests a magnetic mechanism, a possibility would be exchange, as the origin of the zero field splitting.

Keywords

Recombination GaAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Elliot, Phys. Rev. B, 96: 266 (1954); Y. Yafet, in: “Solid State Physics”, F. Scitz and D.Turnbull, eds., Academic, New York, 14:1 (1963)CrossRefGoogle Scholar
  2. 2.
    G.L. Bir, A.G. Aronov, G.E. Pikus, Zh. Eksp. Teor. Fiz., 69: 1382 (1975) [Sov. Phys. JETP, 42:705 (1976)]Google Scholar
  3. 3.
    M.I. D’yakonov and V.I. Perel, Zh. Eksp. Teor. Fiz., 60: 1954 (1971), [Sov. Phys. Solid State, 13:3023 (1972)]Google Scholar
  4. 4.
    “Optical Orientation, Modern Problems in Condensed Matter Sciences”, Vol. 8, F. Meier and B.P. Zakharchenya, eds., North-Holland, Amsterdam, (1984)Google Scholar
  5. 5.
    K. Zerrouatti, F. Fabre, G. Bacquet, J. Frandon, G. Lampel, D. Paget, Phys. Rev. B, 37: 1334 (1988)CrossRefGoogle Scholar
  6. 6.
    G. Fishman, G. Lampel, Phys. Rev. B, 16: 820 (1977)CrossRefGoogle Scholar
  7. 7.
    R.C. Miller, D.A. Kleinman, W.A. Nordland, Jr., and A.C. Gossard, Phys. Rev. B, 22: 863 (1980)CrossRefGoogle Scholar
  8. 8.
    C. Weisbuch, R.C. Miller, R. Dingle, A.C. Gossard and W. Wiegmann, Solid State Commun., 37: 219 (1981)CrossRefGoogle Scholar
  9. 9.
    W.A.J.A. van der Poel, A.L.G.J. Severens, H.W. van Kesteren and C.T. Foxon, Superlatt. Microstr., 5: 115 (1989)CrossRefGoogle Scholar
  10. 10.
    See e.g.: Proceedings of Symposium “Alfred Raster”, Ann. Phys. Fr.,Vol. 10 (1985)Google Scholar
  11. 11.
    M. Potemski, J.C. Maan. A. Fasolino, F. Ancilotto, K. Ploog, G. Weimann, p.235 in: “Proc. 19th Intl. Conf. Phys. Semiconductors”, Warsaw 1988, W. Zawadzki, ed., IPPAS, (1989); Phys. Rev. Lett., 63:2409 (1989)Google Scholar
  12. 12.
    R.C. Miller, C.W. Tu, S.K. Sputz and R.F. Kopf, Appl. Phys. Lett., 49: 1245 (1986)CrossRefGoogle Scholar
  13. 13.
    X. Liu, A. Petrou, B.D. McCombe, J. Ralston and G. Wicks, Phys. Rev. B, 38: 8522 (1988)CrossRefGoogle Scholar
  14. 14.
    R.C. Miller, D.A. Kleinman, A.C. Gossard and O. Munteanu, Phys. Rev. B, 25: 6545 (1982); S. Charonneau, T. Steiner, M.L.W. Thewalt, E.S. Koteles, J.Y. Chi and B. Elman, Phys. Rev. B, 38:3583 (1988)CrossRefGoogle Scholar
  15. 15.
    R. Bauer, D. Bimberg, J. Christen, D. Oertel, D. Mars, J.N. Miller, T. Fukunaga, H. Nakasima, p.525, in: “Proc. ICPS18, Stockholm”, O. Engström,ed., World Scientific, Singapore, (1987)Google Scholar
  16. 16.
    W. Ossau, B. Jäkel, E. Bangert, G. Landwehr and G. Weimann, Surf. Sci., 174: 188 (1986)CrossRefGoogle Scholar
  17. 17.
    G.E.W. Bauer and T. Ando, Phys. Rev. B, 37: 3130 (1988)CrossRefGoogle Scholar
  18. 18.
    S-R.E. Yang and L.J. Sham, Phys. Rev. Lett., 58: 2598 (1987)CrossRefGoogle Scholar
  19. 19.
    J.C. Maan, G. Belle, A. Fasolino, M. Altarelli and K. Ploog, Phys. Rev. B, 30: 2253 (1984); L. Vina, M. Potemski, J.C. Maan, G.E.W. Bauer, E.E. Mendez and W.I. Wang, Superl. Microstr., 5:371 (1989)CrossRefGoogle Scholar
  20. 20.
    F. Ancilotto, A. Fasolino and J.C. Maan, Phys. Rev. B, 38: 1788 (1988)CrossRefGoogle Scholar
  21. 21.
    Y. Chen, B. Gil, P. Lefebre and H. Mathieu, Phys. Rev. B, 37: 6429 (1988)CrossRefGoogle Scholar
  22. 22.
    M. Potemski, J.C. Maan, A. Fasolino, K. Ploog and G. Weimann, Surface Sci., 229: 151 (1990)CrossRefGoogle Scholar
  23. 23.
    B.R. Salmassi and G.E.W. Bauer, Phys. Rev. B, 39: 1970 (1988)CrossRefGoogle Scholar
  24. 24.
    B.C. Cavenett and E.J. Pakulis, Phys. Rev. B, 32: 8449 (1985)CrossRefGoogle Scholar
  25. 25.
    M. Dobers, K. v. Klitzing and G. Weimann, Phys. Rev. B, 38: 55453 (1988)CrossRefGoogle Scholar
  26. 26.
    H.W. v. Kesteren, E.C. Cosmas, F.J.A.M. Greidanus, P. Dawson, K.J. Moore and C.T. Foxon, Phys. Rev. Lett., 61: 129 (1988)CrossRefGoogle Scholar
  27. 27.
    M. Dobers, K. v. Klitzing, J. Schneider, G. Weimann and K. Ploog, Phys. Rev. Lett., 61: 1650 (1988)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. C. Maan
    • 1
  • M. Potemski
    • 1
  • A. Fasolino
    • 2
  • K. Ploog
    • 3
  • G. Weimann
    • 4
  1. 1.Max-Planck-Institut für Festkörperforschung HMLGrenoble CedexFrance
  2. 2.SISSA Strada Costiera 11TriesteItaly
  3. 3.Max-Planck-Institut für FestkörperforschungStuttgart 80Germany
  4. 4.Walter Schottky InstitutTU MünchenGarchingGermany

Personalised recommendations