Strained Layer Lasers in the InGaAs/GaAs/AlGaAs Heterostructure System

  • H. Morkoç
Part of the NATO ASI Series book series (NSSB, volume 253)


Recent developments in the technology and fundamentals of strained layer epitaxial systems have generated overwhelming interest in the exploitation of such heterostructures for optical and electronic device applications. This is in part due to the additional degrees of freedom provided for device structures to be tailored for the particular application and in many cases improved performance over what is possible with the lattice matched systems alone. For example, quantum well lasers with strained InGaAs active layers have achieved threshold currents comparable to those with GaAs channels but with much less edge losses due to the smaller surface recombination velocity in InGaAs and very stable power outputs. Reduced threshold currents and increased differential gains are expected to lead to modulation at higher frequencies.


Valence Band Heavy Hole Light Hole Valence Band Edge Threshold Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.W. Matthews and A.E. Blakeslee, J. Crystal Growth, 32: 265 (1976)CrossRefGoogle Scholar
  2. 2.
    G.C. Osbourn, J. Vac. Sci. and Technol., A3: 826 (1985)Google Scholar
  3. 3.
    G. Bastard, Phys. Rev. B, 25: 7584 (1982)CrossRefGoogle Scholar
  4. 4.
    J.Y. Marzin, in: “Heterojunction and Semiconductor Superlattices”, G.Allen, G. Bastard, N. Boceara, M. Lannoo and M. Voss, Eds., Springer Verlag, Berlin, Heidelberg, (1982)Google Scholar
  5. 5.
    F.H. Pollak and M. Cardona, Phys. Rev., 172: 816 (1968)CrossRefGoogle Scholar
  6. 6.
    G. Ji, D. Huang, U.K. Reddy, T.S. Henderson, R. Houdre and H. Morkoc, J. Appl. Phys., 62: 3366 (1987)CrossRefGoogle Scholar
  7. 7.
    S. Adachi, J. Appl. Phys., 53: 8775 (1982)CrossRefGoogle Scholar
  8. 8.
    Y.T. Leu, F.A. Thiel, H. Scheiber, B.I. Miller and J. Bachmann, J. Electron. Mater., 8: 663 (1979)CrossRefGoogle Scholar
  9. 9.
    K.H. Goetz, D. Bimberg, Jür, J. Sciders, A.V. Solononov, G.F. Glinskii, M. Razeghi and J.J. Robin, J. Appl. Phys., 54: 4543 (1983)CrossRefGoogle Scholar
  10. 10.
    K. Nishi, K. Hirose and T. Mizutani, Appl. Phys. Lett., 49: 794 (1986)CrossRefGoogle Scholar
  11. 11.
    W.T. Masselink, Ph.D. Thesis, University of Illinois (1986)Google Scholar
  12. 12.
    P.P. Szydlik, S. Alterovitz, E.J. Haugland, B. Segall, T.S. Henderson, J. Klem and H. Morkoc, Superlattices and Microstructures, 4: 4 (1988)CrossRefGoogle Scholar
  13. 13.
    Y.S. Lin, C.T. Liu, D.C. Tsui, E.D. Jones and L.R. Dawson, Appl. Phys. Lett., 55: 666 (1988)CrossRefGoogle Scholar
  14. 14.
    G.C. Osbourn, J.E. Schirber, T.J. Drummond, L.R. Dawson, B.L. Doyle and I.J. Fritz, Appl. Phys. Lett., 49: 731 (1986)CrossRefGoogle Scholar
  15. 15.
    E.D. Jones, S.K. Lyo, I.J. Fritz, J. Klem, J.E. Schirber, C.P. Tigges and T.J. Drummond, Appl. Phys. Lett., 54: 2227 (1989)CrossRefGoogle Scholar
  16. 16.
    C.T. Liu, S.Y. Lin, D.C. Tsui, H. Lee and D. Ackley, Appl. Phys. Lett., 53: 2510 (1988)CrossRefGoogle Scholar
  17. 17.
    I.J. Fritz, J.E. Schirber, E.D. Jones, T.J. Drummond and G.C. Osbourn, Inst. Phys. Conf. Series, 83: 233 (1986)Google Scholar
  18. 18.
    H.C. Casey, Jr. and M.B. Panish, “Heterostructure Lasers”, Academic Press, (1978)Google Scholar
  19. 19.
    W.T. Tsang, in: “Applications of Multiquantum Wells, Selective Doping and Superlattices”, R. Dingle, ed.; Vol. 24 of “Semiconductors and Semi Metals”, Willardson and Beer, eds., Academic Press (1987)Google Scholar
  20. 20.
    C.H. Henry, R.A. Logan and F.R. Merritt, J. Appl. Phys., 49: 3530 (1978)CrossRefGoogle Scholar
  21. 21.
    H.Z. Chen, H. Wang, A. Ghaffari, H. Morkoc and A. Yariv, Appl. Phys. Lett., 51: 990 (1987)CrossRefGoogle Scholar
  22. 22.
    T. Matsusue and H. Sakaki, Appl. Phys. Lett., 50: 1429 (1987)CrossRefGoogle Scholar
  23. 23.
    H.Z. Chen, private communication.Google Scholar
  24. 24.
    Y. Arakowa and A. Yariv, IEEE J. Quantum Electronics, QE22: 1887 (1986)CrossRefGoogle Scholar
  25. 25.
    N.K. Dutta, J. Appl. Phys., 53: 7211 (1982)CrossRefGoogle Scholar
  26. 26.
    I. Suemene, L.A. Coldren, M. Yamanashi and Y. Kan, Appl. Phys. Lett., 53: 1378 (1988)CrossRefGoogle Scholar
  27. 27.
    S.E. Fischer, D. Fekete, G.B. Feak and J.M. Ballantyne, Appl. Phys. Lett., 50: 714 (1987)CrossRefGoogle Scholar
  28. 28.
    L. Eng. T.R. Chen, S. Sanders, Y.H. Zhurng, B. Zhao, A. Yariv and H. Morkog, Appl. Phys. Lett., 55: 1378 (1989)CrossRefGoogle Scholar
  29. 29.
    D.P. Bour, D.B. Gilbert, L. Elbaun and M.G. Harvey, Appl. Phys. Lett., 53: 2371 (1988)CrossRefGoogle Scholar
  30. 30.
    I. Suemene, Appl. Phys. Lett., 55: 2579 (1989)CrossRefGoogle Scholar
  31. 31.
    D.P. Bour, R.U. Martinelli, D.B. Gilbert, L. Elbaun and M.G. Harvey, Appl. Phys. Lett., 55: 1501 (1989)CrossRefGoogle Scholar
  32. 32.
    K.J. Beernink, P.V. York, J.J. Coleman, R.G. Waters, J. Kim and C.M. Wayman, Appl. Phys. Lett., 55: 2167 (1989)CrossRefGoogle Scholar
  33. 33.
    From Table II.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • H. Morkoç
    • 1
  1. 1.Coordinated Science Laboratory and Materials Research LaboratoryUniversity of IllinoisUrbanaUSA

Personalised recommendations