Heterojunction Band Discontinuities for Pseudomorphically Strained InxGa1 - xAs/AlyGa1 - yAs Heterointerfaces

  • D. J. Arent
  • C. Van Hoof
  • G. Borghs
  • H. P. Meier
Part of the NATO ASI Series book series (NSSB, volume 253)


A general description is presented for calculating the strain-induced variations in the band edge discontinuities for pseudomorphically strained III–V heterointerfaces grown in the (100) direction. InxGal-xAs/AlyGal-yAs ternary/ternary heterointerfaces are specifically treated within the virtual crystal approximation, accounting for band parabolicity and composition dependent material parameters. In conjunction with the development of an equation describing the strained InxGal-xAs band gap as a function of In concentration, the conduction band offset ratios, calculated as a function of both In and Al content, are shown to be nonconstant and are in very good agreement with experimental data derived from strained single quantum well samples grown by molecular beam epitaxy and analyzed using room temperature photoreflectance spectroscopy and data from the literature.


Valence Band Valence Band Maximum InGaAs Layer Band Discontinuity Virtual Crystal Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.G. Osbourn, Phys. Rev. B, 27: 5126 (1989)CrossRefGoogle Scholar
  2. 2.
    J.Y. Marzin, M.M. Charasse and B. Sermage, Phys. Rev. B, 31: 8298 (1985)CrossRefGoogle Scholar
  3. 3.
    J.M. Langer, C. Delerue, M. Lannoo and H. Heinrich, Phys. Rev. B, 38: 7723 (1988)CrossRefGoogle Scholar
  4. 4.
    C.G. Van De Walle, Phys. Rev. B, 39: 1871 (1989) and references thereinCrossRefGoogle Scholar
  5. 5.
    D.J. Arent, K. Deneffe, C. Van Hoof, J. De Boeck and G. Borghs, J. Appl. Phys., 66: 1739 (1989)CrossRefGoogle Scholar
  6. 6.
    F. Iikawa, F. Cerdeira, C. Vazquez-Lopez, P. Motisuke, M.A. Sacilotti, A.P. Roth and R.A. Masut, Phys. Rev. B, 38: 8473 (1988)CrossRefGoogle Scholar
  7. 7.
    S.H. Pan, H. Shen, Z. Hang, F.H. Pollak, W. Zhuang, Q. Xu, A.P. Roth, R.A. Masut, C. Laselle and D. Morris, Phys. Rev. B, 38: 3375 (1988)CrossRefGoogle Scholar
  8. 8.
    S. Niki, C.L. Lin, W.S.C. Chang and H.H. Wieder, Appl. Phys. Lett., 55: 1339 (1989)CrossRefGoogle Scholar
  9. 9.
    D. Gershoni, J.M. Vandenberg, S.N.G. Chu, T. Tanbun-Ek and R. A. Logan, Phys. Rev. B, 40: 10017 (1989)CrossRefGoogle Scholar
  10. 10.
    M.J. Joyce, M.J. Johnson, M. Gal and B.F. Usher, Phys. Rev. B, 38: 10978 (1988)CrossRefGoogle Scholar
  11. 11.
    A. Ksendzov, H. Shen, F.H. Pollak and D.P. Bour, Solid State Commun., 73: 11 (1990)CrossRefGoogle Scholar
  12. 12.
    See for example K. Tai, A. Mysyrowicz, R.J. Fischer, R.D. Slusher and A.Y. Cho, Phys. Rev. Lett., 62: 1784 (1989) and references thereinCrossRefGoogle Scholar
  13. 13.
    N.E. Christensen, Phys. Rev. B, 38: 12687 (1988) and references thereinCrossRefGoogle Scholar
  14. 14.
    R. People, K.W. Wecht, K. Alavi and A.Y. Cho, Appl. Phys. Lett., 43: 118 (1983)CrossRefGoogle Scholar
  15. 15.
    A. Sandhu, Y. Nakata, S. Sas, K. Kodama and S. Hiyamizu, Jpn. J. Appl. Phys., 26: 1709 (1987)CrossRefGoogle Scholar
  16. 16.
    D.J. Arent, to appear in Phys. Rev. B, (March 1990)Google Scholar
  17. 17.
    M. Cardona and N.E. Christensen, Phys. Rev. B, 37: 1011 (1988)CrossRefGoogle Scholar
  18. 18.
    F.H. Pollak and M. Cardona, Phys. Rev., 172: 816 (1968)CrossRefGoogle Scholar
  19. 19.
    D.E. Aspnes and J.E. Rowe, Phys. Rev. Lett., 27: 188 (1971)CrossRefGoogle Scholar
  20. 20.
    N. Debbar, D. Biswas and P. Bhattacharya, Phys. Rev. B, 40: 1058 (1989)CrossRefGoogle Scholar
  21. 21.
    J.M. Moisin, C. Guille, M. Van Rompay, F. Barthe, F. Houzay and B. Bensoussan, Phys. Rev. B, 39: 1772 (1989)CrossRefGoogle Scholar
  22. 22.
    T.G. Andersson, Z.G. Chen, V.D. Kulakovskii, A. Uddin and J.T. Vallin, Phys. Rev. B, 37: 4032 (1988)CrossRefGoogle Scholar
  23. 23.
    J.-P. Reithmaier, R. Höger, H. Reichert, A. Heberle, G. Abstreiter and G. Weimann, Appl. Phys. Lett., 46: 536 (1990)CrossRefGoogle Scholar
  24. 24.
    J. Menendez, A. Pinczuk, D.J. Werder, S.K. Sputz, R.C. Miller, D.L. Sivco and A.Y. Cho, Phys. Rev. B, 36: 8165 (1987)CrossRefGoogle Scholar
  25. 25.
    C. Basio, J.L. Staehli, M. Guzzi, G. Burri and R.A. Logan, Phys. Rev. B, 38: 3263 (1988)CrossRefGoogle Scholar
  26. 26.
    “Semiconductors”, O. Madelung, M. Schulz and H. Weiss, eds., Landolt-Bornstein, New Series, Group 3, Vol. 17a, Springer-Verlag, Berlin (1982)Google Scholar
  27. 27.
    K.H. Goetz, D. Bimberg, H. Jur, J. Sciders, A.V. Solomonov, G.F. Glinskii, M. Razeghi and J.J. Robin, J. Appl. Phys., 54: 4543 (1983)CrossRefGoogle Scholar
  28. 28.
    O. Berolo and J.C. Wooley, p.1420 in: “Proceedings of 11th Int. Conf. on the Physics of Semiconductors, Warsaw, 1972”, Polish Scientific, Warsaw (1972)Google Scholar
  29. 29.
    C.T. Liu, S.Y. Kin, D.C. Tsui, H. Lee and D. Ackley, Appl. Phys. Lett., 53: 2510 (1988)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • D. J. Arent
    • 1
  • C. Van Hoof
    • 2
  • G. Borghs
    • 2
  • H. P. Meier
    • 1
  1. 1.IBM Research DivisionZurich Research LaboratoryRüschlikonSwitzerland
  2. 2.Interuniversity Microelectronics Center (IMEC) Kapeldreef 75LeuvenBelgium

Personalised recommendations