Oscillating Transverse Voltage in a Channel with Quantum Point Contact Voltage Probes

  • L. W. Molenkamp
  • H. van Houten
  • C. W. J. Beenakker
  • R. Eppenga
  • C. T. Foxon
Part of the NATO ASI Series book series (NSSB, volume 253)

Abstract

We have observed a transverse voltage on passing a current through a narrow channel, electrostatically defined in a two-dimensional electron gas, at zero magnetic field. The channel is fitted with two opposite quantum point contact voltage probes, and the voltage occurs when these probes are differently adjusted, so that the transmission probabilities through the probes have a different energy dependence. The transverse voltage occurs only in the nonlinear response regime, and is even in the applied current; the driving force of the effect is the current-heating of the electrons in the channel. We observe strong oscillations in the transverse voltage as the number of occupied subbands in one of the voltage probes is varied by means of electrostatic or magnetic depopulation. Model calculations show that this novel effect is a manifestation of the oscillatory thermopower of a quantum point contact predicted by Streda. The effect can thus be used to obtain information on electron heating.

Keywords

Coherence GaAs Kelly Mirror Symmetry Haas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel and C.T. Foxon, Phys. Rev. Lett., 60: 848 (1988); D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie and G.A.C. Jones, J. Phys. C, 21:L209 (1988)CrossRefGoogle Scholar
  2. 2.
    H. van Houten, C.W.J. Beenakker and B.J. van Wees, in: “Semiconductors and Semimetals”, M. Reed, ed., Academic Press, New York, to be published.Google Scholar
  3. 3.
    G. Timp, in: “Semiconductors and Semimetals”, M. Reed, ed., Academic Press, New York, to be published.Google Scholar
  4. 4.
    B.J. van Wees, L.P. Kouwenhoven, H. van Houten, C.W.J. Beenakker, J.E. Mooij, C.T. Foxon and J.J. Harris, Phys. Rev. B, 38: 3625 (1988)CrossRefGoogle Scholar
  5. 5.
    L.P. Kouwenhoven, B.J. van Wees, C.J.P.M. Harmans, J.G. Williamson, H. van Houten, C.W.J. Beenakker, C.T. Foxon and J.J. Harris, Phys. Rev. B, 39: 8040 (1989)CrossRefGoogle Scholar
  6. 6.
    R.J. Brown, M.J. Kelly, M. Pepper, H. Ahmed, D.G. Hasko, D.C. Peacock, J.E.F. Frost, D.A. Ritchie and G.A.C. Jones, J. Phys. Condens. Matter, 1: 6285 (1989)CrossRefGoogle Scholar
  7. 7.
    H. van Houten, B.J. van Wees, J.E. Mooij, C.W.J. Beenakker, J.G. Williamson and C.T. Foxon, Europhys. Lett., 5: 721 (1988); H. van Houten, C.W.J. Beenakker, J.G. Williamson, M.E.I. Broekaart, P.H.M. van Loosdrecht, B.J. van Wees, J.E. Mooij, C.T. Foxon and J.J. Harris, Phys. Rev. B, 39:8556 (1989)CrossRefGoogle Scholar
  8. 8.
    J. Spector, H.L. Stormer, K.W. Baldwin, L.N. Pfeiffer and K.W. West, Surf. Sci., 228: 283 (1990)CrossRefGoogle Scholar
  9. 9.
    J.G. Williamson, H. van Houten, C.W.J. Beenakker, M.E.I. Broekaart, L.I.A. Spendeier, B.J. van Wees and C.T. Foxon, Phys. Rev. B, 41: 1207 (1990)CrossRefGoogle Scholar
  10. 10.
    B.J. van Wees, E.M.M. Willems, C.J.P.M. Harmans, C.W.J. Beenakker, H. van Houten, J.G. Williamson, C.T. Foxon and J.J. Harris, Phys. Rev. Lett., 62: 1181 (1989)CrossRefGoogle Scholar
  11. 11.
    D.A. Wharam, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie and G.A.C. Jones, J. Phys. C, 21: L887 (1988)CrossRefGoogle Scholar
  12. 12.
    L.W. Molenkamp, A.A.M. Staring, C.W.J. Beenakker, R. Eppenga, C.E. Timmering, J.G. Williamson, C.J.P.M. Harmans and C.T. Foxon, Phys. Rev. B, 41: 1274 (1990)CrossRefGoogle Scholar
  13. 13.
    L.W. Molenkamp, H. van Houten, C.W.J. Beenakker, R. Eppenga and C.T. Foxon, Phys. Rev. Lett., 65: 1052 (1990)CrossRefGoogle Scholar
  14. 14.
    R.A. Webb, S. Washburn and C.P. Umbach, Phys. Rev. B, 37: 8455 (1988)CrossRefGoogle Scholar
  15. 15.
    S.B. Kaplan, Surf. Sci., 196: 93 (1988)CrossRefGoogle Scholar
  16. 16.
    P.G.N. de Vegvar, G. Timp, P.M. Mankiewich, J.E. Cunningham, R. Behringer and R.E. Howard, Phys. Rev. B, 38: 4326 (1988)CrossRefGoogle Scholar
  17. 17.
    R. Landauer, in: “Nonlinearity in Condensed Matter”, A.R. Bishop, D.K. Campbell, P. Kumar and S.E. Trullinger, eds., Springer, Berlin (1987)Google Scholar
  18. 18.
    D.R. Leadley, R.J. Nicholas, J.J. Harris and C.T. Foxon, Solid State Electronics, 32: 1473 (1989)CrossRefGoogle Scholar
  19. 19.
    P. Streda, J. Phys. Condens. Matter, 1: 1025 (1989)CrossRefGoogle Scholar
  20. 20.
    U. Sivan and Y. Imry, Phys. Rev. B, 33: 551 (1986)CrossRefGoogle Scholar
  21. 21.
    R. Landauer, IBM J. Res. Dev., 1: 223 (1957)MathSciNetCrossRefGoogle Scholar
  22. 22.
    R. Fletcher, M. D’lorio, A.S. Sachrajda, R. Stoner, C.T. Foxon and J.J. Harris, Phys. Rev. B, 37: 3137 (1988); C. Ruf, H. Oblow, B. Junge, E. Gmelin, K. Ploog and G. Weimann, Phys. Rev. B, 37:6377 (1988)CrossRefGoogle Scholar
  23. 23.
    B.L. Gallagher, T. Galloway, P. Beton, J.P. Oxley, S.P. Beaumont, S. Thorns and C.D.W. Wilkinson, Phys. Rev. Lett., 64: 2058 (1990)CrossRefGoogle Scholar
  24. 24.
    See, e.g. J.R. Hayes, A.F.J. Levi and W. Wiegman, Phys. Rev. Lett., 54: 1570 (1985); A. Palevski, M. Heiblum, C.P. Umbach, C.M. Knoedler, A.N. Broers and R.H. Koch, Phys. Rev. Lett., 62:1776 (1989)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • L. W. Molenkamp
    • 1
  • H. van Houten
    • 1
  • C. W. J. Beenakker
    • 1
  • R. Eppenga
    • 1
  • C. T. Foxon
    • 2
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands
  2. 2.Philips Research LaboratoriesRedhill, SurreyUK

Personalised recommendations