Photoresistive Response of Superconducting Thin Films

  • U. Strom
  • J. C. Culbertson
  • S. A. Wolf


When photons having energies greater than the superconducting energy gap are incident on a superconducting film that is cooled to temperatures near the superconducting transition temperature Tc, there will be a change in the resistivity of the film. This effect can be the basis for an optical detector, such as the superconducting bolometer. High Tc superconductors offer an opportunity for a competitive infrared bolometer which is operated near its relatively high transition edge temperature. Operation in this mode generally precludes a combination of very fast (ns time scale) and very sensitive operation. The bolometric mechanism assumes that the resistance of the film is increased by increasing the temperature of the film, relatively uniformly over the irradiated area. For above gap light this bolometric process will always be present. However, other processes can induce a resistive change which will compete with the bolometric response. The relative importance of the bolometric mechanism relative to other types of processes will depend on the materials parameters and the time scale on which the film is heated and the resistive change is observed.


Bias Current YBCO Film Granular Film Flux Creep Pair Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. R. Testardi, Phys. Rev. 4, 2189 (1971).ADSCrossRefGoogle Scholar
  2. 2.
    W. H. Parker and W. D. Williams, Phys. Rev. Lett. 29, 924 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    C. S. Owen and D. J. Scalapino, Phys. Rev. Lett. 28, 1559 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    Jhy-Jiun Chang and D. J. Scalapino, Phys. Rev. B 10, 4047 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    W. H. Parker, Phys. Rev. 12, 3667 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    A. Rothwarf and B. N. Taylor, Phys. Rev. Lett. 19, 27 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    A. Frenkel et. al., J. Appl. Phys. 67, 3054 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    W. S. Brockelsby, Appl. Phys. Lett. 54, 1175 (1989).Google Scholar
  9. 9.
    M. G. Forrester, M. Gottlieb, J. R. Gavaler, and A. I. Braginski, Appl. Phys. Lett. 53, 1332 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    E. Zeldov, N. M. Amer, G. Koren, and A. Gupta, Phys. Rev. B 39, 9712 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    E. Zeldov et. al., Phys. Rev. Lett. 62, 3093 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    K. Kamaris, Phys. Rev. Lett. 64, 84 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181 (1973).ADSGoogle Scholar
  14. 14.
    A. T. Fiory and F. Hebard, Phys. Rev. B28, 5075 (1983).ADSCrossRefGoogle Scholar
  15. 15.
    A. T. Fiory, A. F. Hebard, P. M. Mankievich, and R. E. Howard, Phys. Rev. Lett. 61, 1419 (1988).ADSCrossRefGoogle Scholar
  16. 16.
    Q. Y. Ying and H. S. Kwok, submitted to Phys. Rev. (1990).Google Scholar
  17. 17.
    S. Martin, A. T. Fiory, R. M. Fleming, G. P. Espinosa, and A. S. Cooper, Phys. Rev. Lett. 62, 677 (1987).ADSCrossRefGoogle Scholar
  18. 18.
    N. C. Yeh and C. C. Tsuei, Phys. Rev. B 39, 9708 (1989).ADSCrossRefGoogle Scholar
  19. 19.
    M. Sugahara et. al., Phys. Lett. Al25, 429 (1989).Google Scholar
  20. 20.
    P. C. E. Stamp, L. Forro, and C. Ayache, Phys. Rev. B38, 2847, (1988).ADSCrossRefGoogle Scholar
  21. 21.
    D. H. Kim and A. M. Goldman, Phys. Rev. B40, 8834 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    R. W. Simon, B. J. Dalrymple, D. VanVechten, W. W. Fuller, and S. A. Wolf, Phys. Rev. B36, 1962 (1987).ADSCrossRefGoogle Scholar
  23. 23.
    J. C. Culbertson, U. Strom, S. A. Wolf, P. Skeath„ and W. K. Burns, Phys. Rev. B39, 12359 (1989).CrossRefGoogle Scholar
  24. 24.
    D. U. Gubser, S. A. Wolf, W. W. Fuller, D. VanVechten, and R. W. Simon, Physica B135, 131 (1985).Google Scholar
  25. 25.
    A. M. Kadin, M. Leung, and A. D. Smith, (private communication).Google Scholar
  26. 26.
    P. L. Richards et. al., Appl. Phys. Leu. 54, 283 (1989).ADSCrossRefGoogle Scholar
  27. 27.
    P. W. Kruse, Semicond. Sci. Technol. 5, 229 (1990).Google Scholar
  28. 28.
    M. Leung (private communication).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • U. Strom
    • 1
  • J. C. Culbertson
    • 1
  • S. A. Wolf
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations