Remote Detection of Atmospheric Pollutants Using Differential Absorption Lidar Techniques

  • J. P. Wolf
  • H. J. Kölsch
  • P. Rairoux
  • L. Wöste
Part of the NATO ASI Series book series (NSSB, volume 241)


Air pollution is an extremely dynamic phenomenon, and this makes its understanding and, therefore, its control, more elusive. This dynamic behavior appears not only in physical terms by the diffusion and transport of emitted pollutants, but also chemically, through the many reactions occuring in the atmosphere. It is therefore of outstanding importance to be able to correlate emission and immission, and thus characterize the impact of different kinds of sources of pollution (industries, vehicles, domestic heaters) on the environment. The only way to control phenomena like acid rains or hole formation in the ozone layer, is to perform a permanent and large-scale monitoring of the air pollution. Presently existing devices, however, although they may be very sensitive like Laser Induced Fluorescence (LIF) or Differential Optical Absorption Spectroscopy (DOAS), can only provide spot measurements at ground level. Three-dimensional informations, reflecting the dynamic character of pollution, are, until now, sorely lacking.


Differential Absorption Lidar System Lidar Measurement Stratospheric Aerosol Remote Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1].
    Laser Monitoring of the Atmosphere”, E.D. Hinkley, Springer Verlag, (1976)CrossRefGoogle Scholar
  2. [2].
    Laser Remote Sensing”, R.M. Measures, J.Wiley & Sons ed., New-York (1984)Google Scholar
  3. [3].
    Laser Remote Chemical Analysis”, R.M. Measures, J.Wiley & Sons ed., New-York (1988)Google Scholar
  4. [4].
    Electromagnetic Scattering on Spherical Polydispersions”, D. Deirmendjan, Am. Elsevier, New-York (1969)Google Scholar
  5. [5].
    “ Transmission through the atmosphere”, R. Beer, in “Laser Remote Chemical Analysis”, R.M. Measures, J.Wiley & Sons ed., New-York (1988)Google Scholar
  6. [6].
    G. Fiocco, L.D. Smullin (1963), “Detection of Scattering Layers in the Upper Atmosphere (60–140 km) by Optical Radar”, Nature 199:1275Google Scholar
  7. [7].
    J. Werner, K.W. Rothe, H. Walther (1983), Monitoring of the Stratospheric Ozone Layer by Laser Radar,App. Phys. B32:113Google Scholar
  8. [8].
    M.P. Mc Cormick (1982), “Lidar Measurements of Mount St. Helens Effluents”,Opt. Eng. 21:340Google Scholar
  9. [9].
    M.P. Mc Cormick, T.J. Swissler, W.P. Chu, W.H. Füller (1978), “Post-volcanic Stratospheric Aerosol Decay as Measured by Lidar”,J.Atmosph.Sciences 35:1296CrossRefGoogle Scholar
  10. [10].
    J. Lefrère, J. Pelon, C. Cahen, A. Hauchecorne, P. Flamant (1981), “Lidar Survey of the Post-Mt. St. Helens Statospheric Aerosol at Haute Provence Observatory”, App. Optics 20 A70:1117Google Scholar
  11. [11].
    M.P. McCormick, “Lidar Measurements of the El-Chichon Stratospheric Aerosol Climatology”, in Proc. of the 12th ILRC, Aix en Provence (1984):203Google Scholar
  12. [12].
    H. Jäger, R. Reiter, W. Carnuth, Sun Jian, “Stratospheric Aerosols Layers during 1982 and 1983 as Observed by Lidar at Garmisch-Partenkirchen” in Proc. of the 12th ILRC, Aix en Provence (1984):207Google Scholar
  13. [13].
    R.J. Allen, C.M.R. Platt (1977), “Lidar for Multiple Backscattering and Depolarization Observations”, App. Optics 16:3193CrossRefGoogle Scholar
  14. [14].
    S.R. Pal, A.I. Carswell (1973), “Polarization Properties of Lidar Backscattering from Clouds”, App. Optics 12:1530CrossRefGoogle Scholar
  15. [15].
    S.R. Pal, A.I. Carswell (1976), “Multiple Scattering in Atmospheric Clouds: Lidar Observations”, App. Optics 15:1990CrossRefGoogle Scholar
  16. [16].
    S.R. Pal, A.I. Carswell (1978), “Polarization Properties of Lidar Scattering from Clouds at 347 nm and 694 nm”, App. Optics 17:2321CrossRefGoogle Scholar
  17. [17].
    W.R. Mc Neil, A.I. Carswell (1975), “Lidar Polarization Studies of the Troposphere”, App. Optics 14:2158CrossRefGoogle Scholar
  18. [18].
    K. Sassen, M.K. Griffin, and G.C. Dodd, “Subvisual Cirrus Cloud Properties Derived From Polarization Lidar, Surface Radiation Flux, and Solar Corona Measurements”, in Proc. 14th ILRC, San Candido (1988):20Google Scholar
  19. [19].
    G. Mégie, F. Bos, J.E. Blamont, M.L. Chanin (1978), “Simultaneous Nighttime Lidar Measurements of Atmospheric Sodium and Potassium”, Planet Space Sci. 26:27CrossRefGoogle Scholar
  20. [20].
    C. Granier, G.Mégie (1982), “Daytime Lidar Measurements of Mesospheric Sodium Layer”, Planet Space Sci. 30 :169CrossRefGoogle Scholar
  21. [21].
    G. Mégie, “Laser Measurements of Atmospheric Trace Constituents”, in Laser Remote Chemical Analysis”, Measures R.M., J.Wiley & Sons ed., New-York (1988)Google Scholar
  22. [22].
    H. Inaba, in “Laser Monitoring of the Atmosphere”, E.D. Hinkley, Springer Verlag, Berlin (1976)Google Scholar
  23. [23].
    W. Lahmann, M. Riebesell, E. Voss, C.Weitkamp, and W. Michaelis, “Raman Lidar for Vertical Water Vapor Profiling”, in Proc. 14 th ILRC, San Candido (1988):477Google Scholar
  24. [24].
    W.R. Fenner, H.A. Hyatt, J.M. Kellan, and S.P.S. Porta (1973), “Raman Cross- sections of Some Simple Gases”, J.Opt.Soc.Am. 63:73CrossRefGoogle Scholar
  25. [25].
    Y.F. Arshinov, S.M. Bobrovnikov, V.E. Zuev, V.M. Mitev (1983), App. Opt. 22:2584CrossRefGoogle Scholar
  26. [26].
    R.M. Measures, G. Pilon (1972), “A Study of Tunable Laser Techniques for Remote Mapping of Specific Gaseous Constituents of the Atmosphere”, Opto-Elec. 4:141CrossRefGoogle Scholar
  27. [27].
    N.Menyuk, D.K. Killinger, C.R. Menyuk (1982), “Limitations of Signal Averaging due to Temporal Correlation in Laser Remote Sensing Measurements”, App.Opt. 21:3377CrossRefGoogle Scholar
  28. [28].
    N. Menyuk, D.K. Killinger (1981), “Temporal Correlation Measurements of Pulsed Dual CO2 Lidar Returns”, Opt.Lett. 6:301CrossRefGoogle Scholar
  29. [29].
    N.Menyuk, D.K. Killinger, C.R. Menyuk (1985), “Error Reduction in Laser Remote Sensing: Combined Effects of Cross-Correlation and Signal Averaging”, App.Opt. 24:118CrossRefGoogle Scholar
  30. [30].
    J.G. Hawley, L.D. Fletcher, and G.F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements”, in “Optical and Laser Remote Sensing”, D.K. Killinger and A Mooradian ed., Springer Series in Optical Sciences, Springer Verlag, Berlin 1983Google Scholar
  31. [31].
    J.P. Wolf, L. Wöste (1987), “Détection Selective et à Distance de la Pollution Atmosphérique par LIDAR”, Helv. Phys. Acta 60:161Google Scholar
  32. [32].
    H.J. Kölsch, P. Rairoux, J.P. Wolf, L. Wöste, “New Perspectives in Remote Sensing Using Excimer-pumped Dye Lasers and BBO Crystals” Proc. 14th ILRC, San-Candido (1988):484Google Scholar
  33. [33].
    Applications de la Spectroscopie Laser à la Pollution Atmosphérique”, J.P. Wolf, Thèse de Doctorat 683, EPFL, Lausanne, Switzerland (1987)Google Scholar
  34. [34].
    K.N. Liou, M.R. Schotland (1971), “Multiple Backscattering and Depolarization from Water Clouds for a Pulsed Lidar System”, J.Atmos.Sci Google Scholar
  35. [35].
    R.T.H. Collis, and P.B. Russel, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption”, in “Laser Monitoring of the Atmosphere”, E.D. Hinkley, Springer Verlag, Berlin (1976)Google Scholar
  36. [36].
    K. Fredriksson, “Differential Absorption Lidar for Pollution Mapping”, in “Laser Remote Chemical Analysis”, R.M. Measures, J.Wiley & Sons ed., New-York (1988)Google Scholar
  37. [37].
    Laser Spectroscopy”, W. Demtröder, Springer Series in Chemical Physics 5, Springer-Verlag, Berlin 1982Google Scholar
  38. [38].
    C. Cahen, G. Mégie (1981), “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique”, J.Quant.Spectros.Radiat.Transfer 25:151CrossRefGoogle Scholar
  39. [39].
    D.J. Brassington, R.C. Felton, B.W. Jolliffe, B.R. Marx, J.T.M. Moncrieff, W.R.C. Rowley, P.T.Woods (1984), “Errors in Spectroscopic Measurements of SO2 due to Nonexponential Absorption of Laser Radiation, with Application to the Remote Monitoring of Atmospheric Pollutants”, App.Optics 23(3):469CrossRefGoogle Scholar
  40. [40].
    P.T. Woods, B.W. Jolliffe (1980), “High Resolution Spectroscopy of SO2 using Frequency-Doubled Pulsed Dye-Laser, with Application to the Remote Sensing of Atmospheric Pollutants”, Optics Comm. 33(3):281CrossRefGoogle Scholar
  41. [41].
    T. Tajime, T. Saheki, K. Ito (1978), “Absorption Characteristics of the γ-0 Band of NO”, App.Optics 17(8):1290CrossRefGoogle Scholar
  42. [42].
    R.M. Schotland, “Some Observations of the Vertical Profile of Water Vapor by a Laser Optical Radar”, Proc. 4th Symposium on Remote Sensing of the Environment, Univ. Michigan, Ann Arbor, (1966):273Google Scholar
  43. [43].
    K.W. Rothe, U. Brinkman, H. Walther (1974), “Remote Sensing of NO2 Emission from a Chemical Factory by the Differential Absorption Technique”, App. Phys. 4:181CrossRefGoogle Scholar
  44. [44].
    K.W. Rothe, U. Brinkman, H. Walther (1974), “Applications of Tunable Dye Lasers to Air Pollution Detection: Measurements of Atmospheric NO2 Concentration by Differential Absorption”, App. Phys. 3:115CrossRefGoogle Scholar
  45. [45].
    W.B. Grant, R.D. Hake, E.M. Liston, R.C. Robbins, E.K. Proctor (1974), “Calibrated Remote Measurements of NO2 Using Differential Absorption Backscatter Technique”, App.Phys.Lett. 24:550CrossRefGoogle Scholar
  46. [46].
    K. Fredriksson, B. Galle, K. Nystrom, S. Svanberg (1979), “Lidar System Applied in Atmospheric Pollution Monitoring”, App. Optics. 18:2998CrossRefGoogle Scholar
  47. [47].
    K. Fredriksson, B. Galle, K. Nystrom, S. Svanberg (1981), “Mobile Lidar System for Environmental Probing”, App.Optics. 20:4181CrossRefGoogle Scholar
  48. [48].
    K. Fredriksson, H.M. Hertz (1984), “Evaluation of the DIAL Technique for Studies on NO2 Using a Mobile Lidar System”, App.Optics 23:1403CrossRefGoogle Scholar
  49. [49].
    B. Galle, A. Sunesson, W. Wendt (1988), ” NO2-Mapping Using Laser-Radar Techniques”, Atmos. Environm. 22:569CrossRefGoogle Scholar
  50. [50].
    W. Staehr, W. Lahman, C. Weitkamp, W. Michaelis, “Differential Absorption Lidar System for NO2 and SO2 Monitoring”, Proc. 12th ILRC Conference, Aix-en- Provence (1984)Google Scholar
  51. [51].
    B.W. Jolliffe, R.C. Felton, N.R. Swann, P.T. Woods, “Field Measurement Studies Using a Differential Absorption Lidar System”, Proc. 12th ILRC Conference, Aix-en- Provence (1984)Google Scholar
  52. [52].
    T. Tsuji, H. Kimura, Y. Higuchi, K. Goto (1976), “NO2 Concentration Measurement in the Atmosphere Using Differential Absorption Dye Laser Radar Technique”, ]ap. J. App. Phys. 15:1743CrossRefGoogle Scholar
  53. [53].
    W.B. Grant, R.D. Hake (1975), “Calibrated Remote Measurements of SO2 and O3 using Atmospheric Backscattering”, J.App.Phys. 46:3019CrossRefGoogle Scholar
  54. [54].
    S. Adrian, D.J. Brassington, S. Sutton, R.H. Varey (1979), “The Measurement of SO2 in Power Station Plumes with Differential Lidar”, Opt. Quant. Elec. 11:253CrossRefGoogle Scholar
  55. [55].
    A. Marzorati, W. Corio and E. Zanzottera (1984), Remote Sensing of SO2 During Fields Tests at Fos-Berre in June 1983. Abstr. 12th International Laser Radar Conference, Aix en Provence, Service d’Aeronomie du CNRS: 259Google Scholar
  56. [56].
    W. Michaelis and c. Weitkamp (1984), Sensitive Remote and in situ Detection of Air Pollutants by Laser Light Absorption Measurements, Fresenius Z. Anal. Chem. 317:286CrossRefGoogle Scholar
  57. [57].
    G. Ancellet, R. Capitini, D. Renaut, G. Mégie and J. Pelon (1984), DIAL Lidar Measurements of Atmospheric Pollutants (SO2, O3 during the Fos-Berre 83 Experiment. Abstr. 12th International Laser Radar Conference, Aix en Provence, Service d’Aeronomie du CNRS: 269Google Scholar
  58. [58].
    J. Pelon and G. Mégie (1982), Ozone Monitoring in the Troposphere and Lower Stratosphere: Evaluation and Operation of a Ground-Based Lidar Station, J. Geophys. Res. 87:4947CrossRefGoogle Scholar
  59. [59].
    E.V. Browell, A.F. Carter, S.T. Shipley, R.J. Allen, C.F. Butler, M.N. Mayo, J.H. Siviter and W.M. Hall (1983), NASA Multipurpose Airborne DIAL System and Measurements of Ozone and Aerosol Profiles, Appl. Optics 22:522CrossRefGoogle Scholar
  60. [60].
    G. Mégie, g. Ancellet, J. Pelon (1985), “Lidar Measurements of Ozone Vertical Profiles”, Appl. Optics 21:3454CrossRefGoogle Scholar
  61. [61].
    C.E. Billings, in “Industrial Pollution”, Irving Sax ed., van Nostrand, New-York (1974)Google Scholar
  62. [62].
    Air Pollution by Photochemical Oxidants”, R. Guderian, Ecological Studies 52, Springer-Verlag, Berlin (1985)Google Scholar
  63. [63].
    Air Pollution”, J.H. Seinfeld, McGraw-Hill ed., (1975)Google Scholar
  64. [64].
    N. Menyuk, D.K. Killinger, W.E. DeFeo (1980), “Remote Sensing of NO Using a Differential Absorption Lidar”, App.Optics. 19:3282CrossRefGoogle Scholar
  65. [65].
    M. Aldén, H. Edner, S. Svanberg (1982), “Laser Monitoring of Atmospheric NO Using Ultraviolet Differential-Absorption Techniques”, Opt.Lett. 7 No 11:543CrossRefGoogle Scholar
  66. [66].
    H.J. Kölsch, P. Rairoux, J.P. Wolf, L. Wöste, “Simultaneous NO and NO2 DIAL Measurement Using BBO Crystals”, submitted to Applied OpticsGoogle Scholar
  67. [67].
    H. Edner, G.W. Faris, A. Sunesson, S. Svanberg, “Progress in DIAL Measurements at Short UV Wavelengths”, in Proc. 14th ILRC, San-Candido (1988):480Google Scholar
  68. [68].
    M. Aldén, H. Edner and S. Svanberg (1982), Remote Measurements of Atmospheric Mercury Using Differential Absorption Lidar, Opt. Lett. 7:221CrossRefGoogle Scholar
  69. [69].
    C. Weitkamp (1981), The Distribution of Hydrogen Chloride in the Plume of Incineration Ships: Development of New Measurement Systems, Wastes in the Ocean, Vol. 3, Wiley, New YorkGoogle Scholar
  70. [70].
    M.J.T. Milton, R.H. Bradsell, B.W. Jolliffe, N.R.W. Swann, P.T. Woods, “The Design and Development of a Near-Infrared DIAL System for the Detection of Hydrocarbons”, in Proc 14th ILRC, San-Candido (1988):370Google Scholar
  71. [71].
    E.R. Murray, J.E. van der Laan and J.G. Hawley (1976), Remote Measurement of HCI, CH4 and NO2 Using Single-Ended Chemical-Laser Lidar System, Appl. Optics 15:3140CrossRefGoogle Scholar
  72. [72].
    G. Mégie and R.T. Menzies (1980), Complementary of UV and IR Differential Absorption Lidar for Global Measurements of Atmospheric Species, Appl. Optics 19:1173CrossRefGoogle Scholar
  73. [73].
    R.T. Menzies and M.S. Shumate (1976) Remote Measurements of Ambient Air Pollutants with a Bistatic Laser System, Appl. Optics 15:2080CrossRefGoogle Scholar
  74. [74].
    D. Killinger, N. Menyuk (1981), “Remote Probing of the Atmosphere Using CO2 DIAL System”, IEEE J.Quant.Elec 17(9):1918CrossRefGoogle Scholar
  75. [75].
    N. Menyuk, D.K. Killinger, W.E. de Feo (1982), “Laser Remote Sensing of Hydrazine, MMH, and UDMH Using a Differential-Absorption CO2 Lidar”, App.Optics 21:2275CrossRefGoogle Scholar
  76. [76].
    M.S. Shumate, R.T. Menzies, W.B. Grant and D.S. Mc Dougal (1981), Laser Absorption Spectrometer: Remote Measurement of Tropospheric Ozone, Appl. Optics 20:545CrossRefGoogle Scholar
  77. [77].
    R.T. Menzies and S. Shumate (1978), Tropospheric Ozone Distributions Measured with an Airborne Laser Absorption Spectrometer, J. Geophys. Res. 83:4039CrossRefGoogle Scholar
  78. [78].
    D.K. Killinger, N. Menyuk and W.E. De Feo (1983), Experimental Comparison of Heterodyne and Direct Detection for Pulsed Differential Absorption CO2 Lidar, Appl. Optics 22:682CrossRefGoogle Scholar
  79. [79].
    O. Uchino, M. Maeda, J. Khono, T. Shibata, C. Nagasawa and M. Hirono (1978), Observation of Stratospheric Ozone Layer by a XeCl Laser Radar, Appl. Phys. Lett. 33:807CrossRefGoogle Scholar
  80. [80].
    O. Uchino, M. Maeda, H. Yamamura and M. Hirono (1983a), Observation of Stratospheric Vertical Ozone Distribution by a XeCl Lidar, ]. Geophys. Res. 88:5273CrossRefGoogle Scholar
  81. [81].
    K. Miyakzaki, H. Sakai, T. Sato (1986), “Efficient Deep-UV Generation by Frequency Doubling in β-BaB2O4”, Opt.Lett. 11 No 12:797CrossRefGoogle Scholar
  82. [82].
    Nguyen Dai Hung, P. Brechignac (1988), “Tunable Alternative Double- Wavelength Single Grating Dye-Laser for DIAL Systems”, App.Optics 27:1906CrossRefGoogle Scholar
  83. [83].
    J. Harms, W. Lahmann and C. Weirkamp (1978), “Geometrical Compression of Lidar Return Signals”, Appl. Optics 17:1131CrossRefGoogle Scholar
  84. [84].
    J. Harms (1979), “Lidar return Signals for Coaxial and Noncoaxial Systems with Central Obstruction”, Appl. Optics 18:1559CrossRefGoogle Scholar
  85. [85].
    T. Halldorsson and J. Langerholc (1978), “Geometrical Form Factors for the Lidar Function”, Appl. Optics 17:240CrossRefGoogle Scholar
  86. [86].
    K. Sassen and G.C. Dodd (1982), Lidar Crossover Function and Misalignment Effects, Appl. Optics 21:3162CrossRefGoogle Scholar
  87. [87].
    R.J. Allen and W.E. Evans (1972), Laser Radar for Mapping Aerosol Structure, Rev. Sci. Instrum. 43:1422CrossRefGoogle Scholar
  88. [88].
    S.L. Valley, Ed. (1965), Handbook of Geophysics and Space Environments, McGraw-Hill, New YorkGoogle Scholar
  89. [89].
    A.J. Eishout, S. Beilke (1984), “Die Oxidation von NO zu NO2 in Abgasfahnen von Kraftwerken”, VGB Kraftwerkstechnik 64:648Google Scholar
  90. [90].
    J. Heicklen, N. Kelly, K. Partymiller (1980), “The Photophysics and Photochemistry of SO2”, Rev.Chem.Interm. 3:315CrossRefGoogle Scholar
  91. [91].
    V. Hasson, R.W. Nicholls (1971), “Absolute Spectral Absorption Measurements on Molecular Oxygen from 2640–1920 A”, J.Phys. B 4: 1789CrossRefGoogle Scholar
  92. [92].
    Interactions between Energy Transformations and Atmospheric Phenomena”, M. Beniston and R. Pielke, Reidel Publishing, Boston (1987)Google Scholar
  93. [93].
    D.J. Brassington (1981), Sulfur Dioxide Absorption Cross Section Measurements from 290 nm to 317 nm, Appl. Optics 20:3774CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. P. Wolf
    • 1
  • H. J. Kölsch
    • 1
  • P. Rairoux
    • 1
  • L. Wöste
    • 1
  1. 1.Institut für ExperimentalphysikFreie Universität BerlinBerlin 33Germany

Personalised recommendations