Skip to main content

Remote Detection of Atmospheric Pollutants Using Differential Absorption Lidar Techniques

  • Chapter
Applied Laser Spectroscopy

Part of the book series: NATO ASI Series ((NSSB,volume 241))

Abstract

Air pollution is an extremely dynamic phenomenon, and this makes its understanding and, therefore, its control, more elusive. This dynamic behavior appears not only in physical terms by the diffusion and transport of emitted pollutants, but also chemically, through the many reactions occuring in the atmosphere. It is therefore of outstanding importance to be able to correlate emission and immission, and thus characterize the impact of different kinds of sources of pollution (industries, vehicles, domestic heaters) on the environment. The only way to control phenomena like acid rains or hole formation in the ozone layer, is to perform a permanent and large-scale monitoring of the air pollution. Presently existing devices, however, although they may be very sensitive like Laser Induced Fluorescence (LIF) or Differential Optical Absorption Spectroscopy (DOAS), can only provide spot measurements at ground level. Three-dimensional informations, reflecting the dynamic character of pollution, are, until now, sorely lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laser Monitoring of the Atmosphere”, E.D. Hinkley, Springer Verlag, (1976)

    Book  Google Scholar 

  2. Laser Remote Sensing”, R.M. Measures, J.Wiley & Sons ed., New-York (1984)

    Google Scholar 

  3. Laser Remote Chemical Analysis”, R.M. Measures, J.Wiley & Sons ed., New-York (1988)

    Google Scholar 

  4. Electromagnetic Scattering on Spherical Polydispersions”, D. Deirmendjan, Am. Elsevier, New-York (1969)

    Google Scholar 

  5. “ Transmission through the atmosphere”, R. Beer, in “Laser Remote Chemical Analysis”, R.M. Measures, J.Wiley & Sons ed., New-York (1988)

    Google Scholar 

  6. G. Fiocco, L.D. Smullin (1963), “Detection of Scattering Layers in the Upper Atmosphere (60–140 km) by Optical Radar”, Nature 199:1275

    Google Scholar 

  7. J. Werner, K.W. Rothe, H. Walther (1983), Monitoring of the Stratospheric Ozone Layer by Laser Radar,App. Phys. B32:113

    CAS  Google Scholar 

  8. M.P. Mc Cormick (1982), “Lidar Measurements of Mount St. Helens Effluents”,Opt. Eng. 21:340

    Google Scholar 

  9. M.P. Mc Cormick, T.J. Swissler, W.P. Chu, W.H. Füller (1978), “Post-volcanic Stratospheric Aerosol Decay as Measured by Lidar”,J.Atmosph.Sciences 35:1296

    Article  Google Scholar 

  10. J. Lefrère, J. Pelon, C. Cahen, A. Hauchecorne, P. Flamant (1981), “Lidar Survey of the Post-Mt. St. Helens Statospheric Aerosol at Haute Provence Observatory”, App. Optics 20 A70:1117

    Google Scholar 

  11. M.P. McCormick, “Lidar Measurements of the El-Chichon Stratospheric Aerosol Climatology”, in Proc. of the 12th ILRC, Aix en Provence (1984):203

    Google Scholar 

  12. H. Jäger, R. Reiter, W. Carnuth, Sun Jian, “Stratospheric Aerosols Layers during 1982 and 1983 as Observed by Lidar at Garmisch-Partenkirchen” in Proc. of the 12th ILRC, Aix en Provence (1984):207

    Google Scholar 

  13. R.J. Allen, C.M.R. Platt (1977), “Lidar for Multiple Backscattering and Depolarization Observations”, App. Optics 16:3193

    Article  CAS  Google Scholar 

  14. S.R. Pal, A.I. Carswell (1973), “Polarization Properties of Lidar Backscattering from Clouds”, App. Optics 12:1530

    Article  CAS  Google Scholar 

  15. S.R. Pal, A.I. Carswell (1976), “Multiple Scattering in Atmospheric Clouds: Lidar Observations”, App. Optics 15:1990

    Article  CAS  Google Scholar 

  16. S.R. Pal, A.I. Carswell (1978), “Polarization Properties of Lidar Scattering from Clouds at 347 nm and 694 nm”, App. Optics 17:2321

    Article  CAS  Google Scholar 

  17. W.R. Mc Neil, A.I. Carswell (1975), “Lidar Polarization Studies of the Troposphere”, App. Optics 14:2158

    Article  Google Scholar 

  18. K. Sassen, M.K. Griffin, and G.C. Dodd, “Subvisual Cirrus Cloud Properties Derived From Polarization Lidar, Surface Radiation Flux, and Solar Corona Measurements”, in Proc. 14th ILRC, San Candido (1988):20

    Google Scholar 

  19. G. Mégie, F. Bos, J.E. Blamont, M.L. Chanin (1978), “Simultaneous Nighttime Lidar Measurements of Atmospheric Sodium and Potassium”, Planet Space Sci. 26:27

    Article  Google Scholar 

  20. C. Granier, G.Mégie (1982), “Daytime Lidar Measurements of Mesospheric Sodium Layer”, Planet Space Sci. 30 :169

    Article  CAS  Google Scholar 

  21. G. Mégie, “Laser Measurements of Atmospheric Trace Constituents”, in Laser Remote Chemical Analysis”, Measures R.M., J.Wiley & Sons ed., New-York (1988)

    Google Scholar 

  22. H. Inaba, in “Laser Monitoring of the Atmosphere”, E.D. Hinkley, Springer Verlag, Berlin (1976)

    Google Scholar 

  23. W. Lahmann, M. Riebesell, E. Voss, C.Weitkamp, and W. Michaelis, “Raman Lidar for Vertical Water Vapor Profiling”, in Proc. 14 th ILRC, San Candido (1988):477

    Google Scholar 

  24. W.R. Fenner, H.A. Hyatt, J.M. Kellan, and S.P.S. Porta (1973), “Raman Cross- sections of Some Simple Gases”, J.Opt.Soc.Am. 63:73

    Article  CAS  Google Scholar 

  25. Y.F. Arshinov, S.M. Bobrovnikov, V.E. Zuev, V.M. Mitev (1983), App. Opt. 22:2584

    Article  Google Scholar 

  26. R.M. Measures, G. Pilon (1972), “A Study of Tunable Laser Techniques for Remote Mapping of Specific Gaseous Constituents of the Atmosphere”, Opto-Elec. 4:141

    Article  CAS  Google Scholar 

  27. N.Menyuk, D.K. Killinger, C.R. Menyuk (1982), “Limitations of Signal Averaging due to Temporal Correlation in Laser Remote Sensing Measurements”, App.Opt. 21:3377

    Article  CAS  Google Scholar 

  28. N. Menyuk, D.K. Killinger (1981), “Temporal Correlation Measurements of Pulsed Dual CO2 Lidar Returns”, Opt.Lett. 6:301

    Article  CAS  Google Scholar 

  29. N.Menyuk, D.K. Killinger, C.R. Menyuk (1985), “Error Reduction in Laser Remote Sensing: Combined Effects of Cross-Correlation and Signal Averaging”, App.Opt. 24:118

    Article  CAS  Google Scholar 

  30. J.G. Hawley, L.D. Fletcher, and G.F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements”, in “Optical and Laser Remote Sensing”, D.K. Killinger and A Mooradian ed., Springer Series in Optical Sciences, Springer Verlag, Berlin 1983

    Google Scholar 

  31. J.P. Wolf, L. Wöste (1987), “Détection Selective et à Distance de la Pollution Atmosphérique par LIDAR”, Helv. Phys. Acta 60:161

    CAS  Google Scholar 

  32. H.J. Kölsch, P. Rairoux, J.P. Wolf, L. Wöste, “New Perspectives in Remote Sensing Using Excimer-pumped Dye Lasers and BBO Crystals” Proc. 14th ILRC, San-Candido (1988):484

    Google Scholar 

  33. Applications de la Spectroscopie Laser à la Pollution Atmosphérique”, J.P. Wolf, Thèse de Doctorat 683, EPFL, Lausanne, Switzerland (1987)

    Google Scholar 

  34. K.N. Liou, M.R. Schotland (1971), “Multiple Backscattering and Depolarization from Water Clouds for a Pulsed Lidar System”, J.Atmos.Sci

    Google Scholar 

  35. R.T.H. Collis, and P.B. Russel, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption”, in “Laser Monitoring of the Atmosphere”, E.D. Hinkley, Springer Verlag, Berlin (1976)

    Google Scholar 

  36. K. Fredriksson, “Differential Absorption Lidar for Pollution Mapping”, in “Laser Remote Chemical Analysis”, R.M. Measures, J.Wiley & Sons ed., New-York (1988)

    Google Scholar 

  37. Laser Spectroscopy”, W. Demtröder, Springer Series in Chemical Physics 5, Springer-Verlag, Berlin 1982

    Google Scholar 

  38. C. Cahen, G. Mégie (1981), “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique”, J.Quant.Spectros.Radiat.Transfer 25:151

    Article  CAS  Google Scholar 

  39. D.J. Brassington, R.C. Felton, B.W. Jolliffe, B.R. Marx, J.T.M. Moncrieff, W.R.C. Rowley, P.T.Woods (1984), “Errors in Spectroscopic Measurements of SO2 due to Nonexponential Absorption of Laser Radiation, with Application to the Remote Monitoring of Atmospheric Pollutants”, App.Optics 23(3):469

    Article  CAS  Google Scholar 

  40. P.T. Woods, B.W. Jolliffe (1980), “High Resolution Spectroscopy of SO2 using Frequency-Doubled Pulsed Dye-Laser, with Application to the Remote Sensing of Atmospheric Pollutants”, Optics Comm. 33(3):281

    Article  CAS  Google Scholar 

  41. T. Tajime, T. Saheki, K. Ito (1978), “Absorption Characteristics of the γ-0 Band of NO”, App.Optics 17(8):1290

    Article  CAS  Google Scholar 

  42. R.M. Schotland, “Some Observations of the Vertical Profile of Water Vapor by a Laser Optical Radar”, Proc. 4th Symposium on Remote Sensing of the Environment, Univ. Michigan, Ann Arbor, (1966):273

    Google Scholar 

  43. K.W. Rothe, U. Brinkman, H. Walther (1974), “Remote Sensing of NO2 Emission from a Chemical Factory by the Differential Absorption Technique”, App. Phys. 4:181

    Article  CAS  Google Scholar 

  44. K.W. Rothe, U. Brinkman, H. Walther (1974), “Applications of Tunable Dye Lasers to Air Pollution Detection: Measurements of Atmospheric NO2 Concentration by Differential Absorption”, App. Phys. 3:115

    Article  CAS  Google Scholar 

  45. W.B. Grant, R.D. Hake, E.M. Liston, R.C. Robbins, E.K. Proctor (1974), “Calibrated Remote Measurements of NO2 Using Differential Absorption Backscatter Technique”, App.Phys.Lett. 24:550

    Article  CAS  Google Scholar 

  46. K. Fredriksson, B. Galle, K. Nystrom, S. Svanberg (1979), “Lidar System Applied in Atmospheric Pollution Monitoring”, App. Optics. 18:2998

    Article  CAS  Google Scholar 

  47. K. Fredriksson, B. Galle, K. Nystrom, S. Svanberg (1981), “Mobile Lidar System for Environmental Probing”, App.Optics. 20:4181

    Article  CAS  Google Scholar 

  48. K. Fredriksson, H.M. Hertz (1984), “Evaluation of the DIAL Technique for Studies on NO2 Using a Mobile Lidar System”, App.Optics 23:1403

    Article  CAS  Google Scholar 

  49. B. Galle, A. Sunesson, W. Wendt (1988), ” NO2-Mapping Using Laser-Radar Techniques”, Atmos. Environm. 22:569

    Article  CAS  Google Scholar 

  50. W. Staehr, W. Lahman, C. Weitkamp, W. Michaelis, “Differential Absorption Lidar System for NO2 and SO2 Monitoring”, Proc. 12th ILRC Conference, Aix-en- Provence (1984)

    Google Scholar 

  51. B.W. Jolliffe, R.C. Felton, N.R. Swann, P.T. Woods, “Field Measurement Studies Using a Differential Absorption Lidar System”, Proc. 12th ILRC Conference, Aix-en- Provence (1984)

    Google Scholar 

  52. T. Tsuji, H. Kimura, Y. Higuchi, K. Goto (1976), “NO2 Concentration Measurement in the Atmosphere Using Differential Absorption Dye Laser Radar Technique”, ]ap. J. App. Phys. 15:1743

    Article  CAS  Google Scholar 

  53. W.B. Grant, R.D. Hake (1975), “Calibrated Remote Measurements of SO2 and O3 using Atmospheric Backscattering”, J.App.Phys. 46:3019

    Article  CAS  Google Scholar 

  54. S. Adrian, D.J. Brassington, S. Sutton, R.H. Varey (1979), “The Measurement of SO2 in Power Station Plumes with Differential Lidar”, Opt. Quant. Elec. 11:253

    Article  Google Scholar 

  55. A. Marzorati, W. Corio and E. Zanzottera (1984), Remote Sensing of SO2 During Fields Tests at Fos-Berre in June 1983. Abstr. 12th International Laser Radar Conference, Aix en Provence, Service d’Aeronomie du CNRS: 259

    Google Scholar 

  56. W. Michaelis and c. Weitkamp (1984), Sensitive Remote and in situ Detection of Air Pollutants by Laser Light Absorption Measurements, Fresenius Z. Anal. Chem. 317:286

    Article  CAS  Google Scholar 

  57. G. Ancellet, R. Capitini, D. Renaut, G. Mégie and J. Pelon (1984), DIAL Lidar Measurements of Atmospheric Pollutants (SO2, O3 during the Fos-Berre 83 Experiment. Abstr. 12th International Laser Radar Conference, Aix en Provence, Service d’Aeronomie du CNRS: 269

    Google Scholar 

  58. J. Pelon and G. Mégie (1982), Ozone Monitoring in the Troposphere and Lower Stratosphere: Evaluation and Operation of a Ground-Based Lidar Station, J. Geophys. Res. 87:4947

    Article  CAS  Google Scholar 

  59. E.V. Browell, A.F. Carter, S.T. Shipley, R.J. Allen, C.F. Butler, M.N. Mayo, J.H. Siviter and W.M. Hall (1983), NASA Multipurpose Airborne DIAL System and Measurements of Ozone and Aerosol Profiles, Appl. Optics 22:522

    Article  CAS  Google Scholar 

  60. G. Mégie, g. Ancellet, J. Pelon (1985), “Lidar Measurements of Ozone Vertical Profiles”, Appl. Optics 21:3454

    Article  Google Scholar 

  61. C.E. Billings, in “Industrial Pollution”, Irving Sax ed., van Nostrand, New-York (1974)

    Google Scholar 

  62. Air Pollution by Photochemical Oxidants”, R. Guderian, Ecological Studies 52, Springer-Verlag, Berlin (1985)

    Google Scholar 

  63. Air Pollution”, J.H. Seinfeld, McGraw-Hill ed., (1975)

    Google Scholar 

  64. N. Menyuk, D.K. Killinger, W.E. DeFeo (1980), “Remote Sensing of NO Using a Differential Absorption Lidar”, App.Optics. 19:3282

    Article  CAS  Google Scholar 

  65. M. Aldén, H. Edner, S. Svanberg (1982), “Laser Monitoring of Atmospheric NO Using Ultraviolet Differential-Absorption Techniques”, Opt.Lett. 7 No 11:543

    Article  Google Scholar 

  66. H.J. Kölsch, P. Rairoux, J.P. Wolf, L. Wöste, “Simultaneous NO and NO2 DIAL Measurement Using BBO Crystals”, submitted to Applied Optics

    Google Scholar 

  67. H. Edner, G.W. Faris, A. Sunesson, S. Svanberg, “Progress in DIAL Measurements at Short UV Wavelengths”, in Proc. 14th ILRC, San-Candido (1988):480

    Google Scholar 

  68. M. Aldén, H. Edner and S. Svanberg (1982), Remote Measurements of Atmospheric Mercury Using Differential Absorption Lidar, Opt. Lett. 7:221

    Article  Google Scholar 

  69. C. Weitkamp (1981), The Distribution of Hydrogen Chloride in the Plume of Incineration Ships: Development of New Measurement Systems, Wastes in the Ocean, Vol. 3, Wiley, New York

    Google Scholar 

  70. M.J.T. Milton, R.H. Bradsell, B.W. Jolliffe, N.R.W. Swann, P.T. Woods, “The Design and Development of a Near-Infrared DIAL System for the Detection of Hydrocarbons”, in Proc 14th ILRC, San-Candido (1988):370

    Google Scholar 

  71. E.R. Murray, J.E. van der Laan and J.G. Hawley (1976), Remote Measurement of HCI, CH4 and NO2 Using Single-Ended Chemical-Laser Lidar System, Appl. Optics 15:3140

    Article  CAS  Google Scholar 

  72. G. Mégie and R.T. Menzies (1980), Complementary of UV and IR Differential Absorption Lidar for Global Measurements of Atmospheric Species, Appl. Optics 19:1173

    Article  Google Scholar 

  73. R.T. Menzies and M.S. Shumate (1976) Remote Measurements of Ambient Air Pollutants with a Bistatic Laser System, Appl. Optics 15:2080

    Article  CAS  Google Scholar 

  74. D. Killinger, N. Menyuk (1981), “Remote Probing of the Atmosphere Using CO2 DIAL System”, IEEE J.Quant.Elec 17(9):1918

    Article  Google Scholar 

  75. N. Menyuk, D.K. Killinger, W.E. de Feo (1982), “Laser Remote Sensing of Hydrazine, MMH, and UDMH Using a Differential-Absorption CO2 Lidar”, App.Optics 21:2275

    Article  CAS  Google Scholar 

  76. M.S. Shumate, R.T. Menzies, W.B. Grant and D.S. Mc Dougal (1981), Laser Absorption Spectrometer: Remote Measurement of Tropospheric Ozone, Appl. Optics 20:545

    Article  CAS  Google Scholar 

  77. R.T. Menzies and S. Shumate (1978), Tropospheric Ozone Distributions Measured with an Airborne Laser Absorption Spectrometer, J. Geophys. Res. 83:4039

    Article  CAS  Google Scholar 

  78. D.K. Killinger, N. Menyuk and W.E. De Feo (1983), Experimental Comparison of Heterodyne and Direct Detection for Pulsed Differential Absorption CO2 Lidar, Appl. Optics 22:682

    Article  CAS  Google Scholar 

  79. O. Uchino, M. Maeda, J. Khono, T. Shibata, C. Nagasawa and M. Hirono (1978), Observation of Stratospheric Ozone Layer by a XeCl Laser Radar, Appl. Phys. Lett. 33:807

    Article  CAS  Google Scholar 

  80. O. Uchino, M. Maeda, H. Yamamura and M. Hirono (1983a), Observation of Stratospheric Vertical Ozone Distribution by a XeCl Lidar, ]. Geophys. Res. 88:5273

    Article  CAS  Google Scholar 

  81. K. Miyakzaki, H. Sakai, T. Sato (1986), “Efficient Deep-UV Generation by Frequency Doubling in β-BaB2O4”, Opt.Lett. 11 No 12:797

    Article  Google Scholar 

  82. Nguyen Dai Hung, P. Brechignac (1988), “Tunable Alternative Double- Wavelength Single Grating Dye-Laser for DIAL Systems”, App.Optics 27:1906

    Article  CAS  Google Scholar 

  83. J. Harms, W. Lahmann and C. Weirkamp (1978), “Geometrical Compression of Lidar Return Signals”, Appl. Optics 17:1131

    Article  CAS  Google Scholar 

  84. J. Harms (1979), “Lidar return Signals for Coaxial and Noncoaxial Systems with Central Obstruction”, Appl. Optics 18:1559

    Article  CAS  Google Scholar 

  85. T. Halldorsson and J. Langerholc (1978), “Geometrical Form Factors for the Lidar Function”, Appl. Optics 17:240

    Article  CAS  Google Scholar 

  86. K. Sassen and G.C. Dodd (1982), Lidar Crossover Function and Misalignment Effects, Appl. Optics 21:3162

    Article  CAS  Google Scholar 

  87. R.J. Allen and W.E. Evans (1972), Laser Radar for Mapping Aerosol Structure, Rev. Sci. Instrum. 43:1422

    Article  CAS  Google Scholar 

  88. S.L. Valley, Ed. (1965), Handbook of Geophysics and Space Environments, McGraw-Hill, New York

    Google Scholar 

  89. A.J. Eishout, S. Beilke (1984), “Die Oxidation von NO zu NO2 in Abgasfahnen von Kraftwerken”, VGB Kraftwerkstechnik 64:648

    Google Scholar 

  90. J. Heicklen, N. Kelly, K. Partymiller (1980), “The Photophysics and Photochemistry of SO2”, Rev.Chem.Interm. 3:315

    Article  CAS  Google Scholar 

  91. V. Hasson, R.W. Nicholls (1971), “Absolute Spectral Absorption Measurements on Molecular Oxygen from 2640–1920 A”, J.Phys. B 4: 1789

    Article  CAS  Google Scholar 

  92. Interactions between Energy Transformations and Atmospheric Phenomena”, M. Beniston and R. Pielke, Reidel Publishing, Boston (1987)

    Google Scholar 

  93. D.J. Brassington (1981), Sulfur Dioxide Absorption Cross Section Measurements from 290 nm to 317 nm, Appl. Optics 20:3774

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Wolf, J.P., Kölsch, H.J., Rairoux, P., Wöste, L. (1990). Remote Detection of Atmospheric Pollutants Using Differential Absorption Lidar Techniques. In: Demtröder, W., Inguscio, M. (eds) Applied Laser Spectroscopy. NATO ASI Series, vol 241. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1342-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1342-7_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1344-1

  • Online ISBN: 978-1-4684-1342-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics