Skip to main content

Environmental Monitoring Using Optical Techniques

  • Chapter
Applied Laser Spectroscopy

Part of the book series: NATO ASI Series ((NSSB,volume 241))

Abstract

Advanced techniques are needed to monitor our threatened environment, to evaluate pollution levels and developmental trends. Tropospheric pollution has obvious manifestations in terms of health problems, water and soil acidification, and forest damage. Human-induced stratospheric changes in the ozone layer, as evidenced by the occurrence of “ozone holes” at the polar caps, may have much more far-reaching consequences1–6. Laser spectroscopy provides powerful means for remote sensing of molecules in the atmosphere, yielding information on pollution levels as well as meteorological conditions. Laser-induced fluorescence provides interesting possibilities for remote monitoring of marine pollution and land vegetation. In the present paper we will consider remote sensing of the atmosphere as well as the marine environment using optical techniques. We will start with atmospheric monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Bach, J. Pankrath and W. Kellogg, eds., “Man’s Impact on Climate,” Elsevier, Amsterdam (1979).

    Google Scholar 

  2. R. Revelle, Carbon dioxide and world climate, Sci. Amer. 247/5:35 (1982).

    Article  CAS  Google Scholar 

  3. J.H. Seinfeld, “Atmospheric Chemistry and Physics of Air Pollution”, Wiley, New York (1986).

    Google Scholar 

  4. R. P. Wayne, “Chemistry of Atmospheres”. Clarendon Press, Oxford (1985).

    Google Scholar 

  5. B.A. Trush, “The chemistry of the stratosphere,” Rep. Prog. Phys. 51:1341 (1988).

    Article  Google Scholar 

  6. R. S. Stolarski, “The Antarctic ozone hole,” Sci. Am. 258/1:30 (1988).

    Article  CAS  Google Scholar 

  7. D.A. Killinger and A. Mooradian, eds., “Optical and Laser Remote Sensing,” Springer Series in Optical Sciences, vol. 39, Springer-Verlag, Heidelberg (1983).

    Google Scholar 

  8. R.M. Measures, “Laser Remote Sensing: Fundamentals and Applica tions”, Wiley, New York (1984).

    Google Scholar 

  9. E.D. Hinkley, ed., “Laser Monitoring of the Atmosphere,” Topics in Applied Physics, vol. 14, Springer-Verlag, Heidelberg (1976).

    Google Scholar 

  10. S. Svanberg, Lasers as probes for air and sea, Contemp. Phys. 21:541 (1980).

    Article  CAS  Google Scholar 

  11. S. Svanberg, Fundamentals of atmospheric spectroscopy, in “Sur veillance of Environmental Pollution and Resources by Electromagnetic Waves,” T. Lund, ed., D. Reidel, Dordrecht (1978).

    Google Scholar 

  12. S. Svanberg, Laser technology in atmospheric pollution monitoring, in “Applied Physics — Laser and Plasma Technology,” B.C. Tan, ed., World Science, Singapore (1985), p. 528.

    Google Scholar 

  13. W.B. Grant, Laser remote sensing techniques, in: “Laser Spectroscopy and its Applications”, L.J. Radziemski, R.W. Solarz, and J.A. Paisner, eds., Marcel Dekker, New York (1987), p. 565.

    Google Scholar 

  14. T. Kobayashi, Techniques for laser remote sensing of the environment, Rem. Sens. Rev. 3:1 (1987).

    Article  Google Scholar 

  15. R.M. Measures, “Laser Remote Chemical Analysis”, Wiley-Interscience, New York (1988).

    Google Scholar 

  16. U. Platt, D. Perner, and H.W. Pätz, Simultaneous measurement of atmospheric CH2O, O3, and NO2 by differential optical absorption, J. Geophys. Res. 84: 6329 (1979).

    Article  CAS  Google Scholar 

  17. U. Platt and D. Perner, Measurements of atmospheric trace gases by long path differential UV/visible absorption spectroscopy, in Ref. (7).

    Google Scholar 

  18. H. Edner, A. Sunesson, S. Svanberg, L. Unéus and S. Wallin, Differ ential optical absorption system used for atmospheric mercury monitoring, Appl. Opt. 25:403 (1986).

    Article  CAS  Google Scholar 

  19. M.L. Chanin, Rayleigh and resonance sounding of the stratosphere and mesosphere, in Ref. (7).

    Google Scholar 

  20. C. Granier and G. Megie, Daytime lidar measurements of the mesos pheric sodium layer, Planet. Space Sci. 30:169 (1982).

    Article  CAS  Google Scholar 

  21. K.H. Fricke and U. v. Zahn, Mesopause temperatures derived from pro bing the hyperfine structure of the D2 resonance line of sodium by lidar, J. Atm. Terr. Phys. 47:499 (1985).

    Article  CAS  Google Scholar 

  22. M. P. Mc Cormick, T.J. Swisser, W. H. Fuller, W. H. Hunt, and M. T. Osborn, Airborne and groundbased lidar measurements of the El Chichon stratospheric aerosol from 90° N to 56 S, Geofisica Internacional 23–2:187 (1984).

    Google Scholar 

  23. H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Unéus, and W. Wendt, Mobile remote sensing system for atmospheric monitoring, Appl. Opt. 26:4330 (1987).

    Article  CAS  Google Scholar 

  24. K. Fredriksson, B. Galle, K. Nyström, and S. Svanberg, Mobile lidar system for environmental probing, Appl. Opt. 20:4181 (1981).

    Article  CAS  Google Scholar 

  25. K. Fredriksson and S. Svanberg, Pollution monitoring using Nd:YAG based lidar systems, in Ref. (7).

    Google Scholar 

  26. K. Fredriksson and H.M. Hertz, Evaluation of the DIAL technique for studies on NO2 using a mobile lidar system, Appl. Opt. 23:1403 (1984).

    Article  CAS  Google Scholar 

  27. A. L. Egebäck, K. Fredriksson, and H.M. Hertz, DIAL techniques for the control of sulfur dioxide emission, Appl. Opt. 23:722 (1984).

    Article  Google Scholar 

  28. H. Edner, A. Sunesson, and S. Svanberg, NO plume mapping using laser radar techniques, Opt. Letters 12:704 (1988).

    Article  Google Scholar 

  29. H. Edner, G.W. Faris, A. Sunesson, and S. Svanberg, Atmospheric ato mic mercury monitoring using differential absorption lidar techniques, Appl. Opt. 28:921 (1989).

    Article  CAS  Google Scholar 

  30. H. Edner, G.W. Faris, A. Sunesson, S. Svanberg, J.Ö. Bjarnason, H. Kristmansdòttir and K.H. Sigurdsson, Lidar search for atomic mercury in Icelandic geothermal fields, Submitted to J. Geophys. Res.

    Google Scholar 

  31. H. Edner, P. Ragnarsson, S. Svanberg and E. Wallinder, to appear.

    Google Scholar 

  32. O. Uchino, M. Togunaga, M. Maeda, and Y. Miyazoe, Differential ab sorption lidar measurement of tropospheric ozone with excimer- Raman hybrid laser, Opt. Lett. 8:347 (1983).

    Article  CAS  Google Scholar 

  33. J. Werner, K.W. Rothe, and H. Walther, Monitoring of the stratosphe ric ozone layer by laser radar, Appl. Phys. B32:113 (1983).

    CAS  Google Scholar 

  34. G. Megie, G. Ancellet, and J. Pelon, Lidar measurements of ozone vertical profiles, Appl. Opt. 24:3454 (1985).

    Article  CAS  Google Scholar 

  35. H. Edner, S. Svanberg, L. Unéus, and W. Wendt, Gas correlation lidar, Opt. Lett. 9:493 (1984).

    Article  CAS  Google Scholar 

  36. P.S. Andersson, S. Montán and S. Svanberg, Multi-spectral system for medical fluorescence imaging, IEEE J. Quant. Electr. QE-23:1798 (1987).

    Article  CAS  Google Scholar 

  37. P. Ragnarsson, Spectroscopic imaging of effluent gases, Diploma paper, Lund Reports on Atomic Physics LRAP-83 (1988).

    Google Scholar 

  38. D.H. Hercules (ed.), “Fluorescence and Phosphorescence Analysis”, Interscience, New York (1966).

    Google Scholar 

  39. E.L. Wehry (ed.), “Modern Fluorescence Spectroscopy”, Vols 1 and 2, Plenum, New York (1976).

    Google Scholar 

  40. S. Udenfriend, “Fluorescence Assay in Biology and Medicine”, Vol. I (1962), and Vol. II (1969), Academic Press, New York.

    Google Scholar 

  41. J.R. Lakowicz, “Principles of Fluorescence Spectroscopy, Plenum, New York (1983).

    Google Scholar 

  42. P.S. Andersson, E. Kjellén, S. Montán, K. Svanberg and S. Svanberg, Autofluorescence of various rodent tissues and human skin tumour samples, Lasers Med. Sci. 2:41 (1986).

    Article  Google Scholar 

  43. F.E. Hoge, R.N. Swift and J.K. Yungel, Active-passive airborne ocean color measurement. 2: Applications, Appl. Opt. 25:48 (1986).

    Article  CAS  Google Scholar 

  44. R. A. O’Neill, L. Buja-Bijunas and D.M. Rayner, Field performance of a laser fluorosensor for the detection of oil spills, Appl. Opt. 19:863 (1980).

    Article  Google Scholar 

  45. G.A. Capelle, L. A. Franks, D.A. Jessup, Aerial testing of a KrF laser-based fluorosensor, Appl. Opt. 22: 3382 (1983).

    Article  CAS  Google Scholar 

  46. H.H. Kim, Airborne bathymetric charting using pulsed blue-green lasers, Appl. Opt. 16:46 (1977).

    Article  CAS  Google Scholar 

  47. F.E. Hoge, R. N. Swift and E. B. Frederick, Water depth measurement using an airborne pulsed neon laser system, Appl. Opt. 19:871 (1980).

    Article  CAS  Google Scholar 

  48. L. Celander, K. Fredriksson, B. Galle and S. Svanberg, Investigation of laser-induced fluorescence with applications to remote sensing of environmental parameters, Göteborg Institute of Physics Reports GIPR-149, CTH, Göteborg (1978).

    Google Scholar 

  49. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg and B. Öström, Underwater laser-radar experiments for bathymetry and fish-school detection, Göteborg Institute of Physics Reports GIPR-162, CTH, Göteborg (1978).

    Google Scholar 

  50. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg and B. Öström, Marine laser probing - results form a field test, Medd. fr. Havs- fiskelaboratoriet 245, Swedish Fishery Board, Lysekil (1979).

    Google Scholar 

  51. B. Galle, T. Olsson and S. Svanberg, The fluorescence properties of jelly-fish, Göteborg Institute of Physics Reports GIPR-181, CTH, Göteborg (1979) (in Swedish).

    Google Scholar 

  52. P.S. Andersson, S. Montán and S. Svanberg, Oil-slick characteriza tion using an airborne fluorosensor - construction considerations, Lund Reports on Atomic Physics LRAP-45, LTH, Lund (1985).

    Google Scholar 

  53. P.S. Andersson, S. Montán and S. Svanberg, Flashlamps for remote fluorescence characterization of oil slicks, Lund Reports on Atomic Physics LRAP-57, LTH, Lund (1986).

    Google Scholar 

  54. P.S. Andersson, S. Montán and S. Svanberg, Remote sample characteri zation based on fluorescence monitoring, Appl. Phys. B44:19 (1987).

    CAS  Google Scholar 

  55. P.S. Andersson, S. Montán and S. Svanberg, Fluorosensor for remote characterization of marine oil-slicks, Intern. Coll. on Remote Sensing of Pollution of the Sea, Oldenburg, March 31-April 3 (1987).

    Google Scholar 

  56. F.E. Hoge, Ocean and terrestrial lidar measurements, in “Laser Remote Chemical Analysis”, R.M. Measures, ed., Wiley-Interscience, New York (1988).

    Google Scholar 

  57. F.E.Hoge, R.N. Swift, and J.K. Yungel, Feasiblility of airborne de- tection of laser-induced fluorescence of green terrestrial plants, Appl. Opt. 22:2991 (1983).

    Article  CAS  Google Scholar 

  58. E.W. Chappelle, F.M. Wood, W.W. Newcomb, and J.E. McMurtrey, III, Laser-induced fluorescence of green plants. 3. LIF spectral studies of five major plant types, Appl. Opt. 24:74 (1985).

    Article  CAS  Google Scholar 

  59. F. Castagnoli et al., A fluorescence lidar for land and sea remote sensing, SPIE 663:212 (1986).

    Google Scholar 

  60. S. Andersson-Engels, K. Callander and B. Galle, Investigation of the possibilities to use laser-induced fluorescence to map conifer forest damage caused by ozone, IVL Report L88/146, IVL, Göteborg (1988).

    Google Scholar 

  61. S. Svanberg, Environmental diagnostics, in “Trends in Physics”, M.M. Woolfson, ed., Adam Hilger, Bristol (1979).

    Google Scholar 

  62. P. Herder, T. Olsson, E. Sjöblom and S. Svanberg, Monitoring of sur face layers using laser-induced fluorescence, Lund Reports On Atomic Physics LRAP-9, LTH, Lund (1981).

    Google Scholar 

  63. H.S. Chen, “Space Remote Sensing Systems,” Academic, Orlando (1985).

    Google Scholar 

  64. S. Montán and S. Svanberg, A system for industrial surface monitor ing utilizing laser-induced fluorescence, Appl. Phys. B38:241 (1985).

    Google Scholar 

  65. S. Montán and S. Svanberg, Industrial applications of laser-induced fluorescence, L.I.A. ICALEO 47:153 (1985).

    Google Scholar 

  66. S. Svanberg, Medical applications of laser-induced fluorescence, Phys. Scripta T19:469 (1987).

    Article  Google Scholar 

  67. S. Svanberg, Medical applications of laser spectroscopy, Phys. Scripta T26:90 (1989).

    Article  CAS  Google Scholar 

  68. S. Andersson-Engels, J. Ankerst, A. Brun, Å. Einer, A. Gustafson, J. Johansson, S.-E. Karlsson, D. Killander, E. Kjellén, E. Lind- stedt, S. Montán, L.G. Salford, B. Simonsson, U. Stenram, L.-G. Strömblad, K. Svanberg and S. Svanberg, Tissue diagnostics using laser-induced fluorescence, Ber. Bunsenges. Phys. Chem. 93:335(1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Svanberg, S. (1990). Environmental Monitoring Using Optical Techniques. In: Demtröder, W., Inguscio, M. (eds) Applied Laser Spectroscopy. NATO ASI Series, vol 241. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1342-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1342-7_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1344-1

  • Online ISBN: 978-1-4684-1342-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics