Skip to main content

Amorphization Induced by Chemical Disorder in Crystalline NiZr2 : A Molecular Dynamics Study Based on a N-Body Potential

  • Chapter
Microscopic Simulations of Complex Flows

Part of the book series: NATO ASI Series ((NSSB,volume 236))

  • 123 Accesses

Abstract

Solid State crystalline-to-amorphous transformations received recently considerable attention1due to the possibility they offer to produce bulk amorphous materials and the challenging questions that arise when trying to understand the underlying mechanisms. Various physical processes such as irradiation2, interdiffusion3, annealing4or mechanical alloying5are able to transform a crystalline material into an amorphous solid, provided the temperature does not exceed the crystallization temperature of the amorphous system at the same composition. A common feature of these processes is the intimate intermixing of the constituents and the resulting chemical disorder. For systems where important size effects exist the chemical disorder leads to amorphization6possibly related to an elastic instability as suggested by recent theoretical work7,8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. B. Schwartz and W. L. Johnson, Eds., Proc. of the Conf. on Solid State Amorphizing Transformations(Los Alamos, NM, August 10–13, 1987), Elsevier Sequoia, Lausanne, J. of the Less-Common Met., 140(1988).

    Google Scholar 

  2. K. C. Russell, Prog. Mat. Sci., 28, 229 (1985).

    Article  Google Scholar 

  3. M. Gerì and P. Guilmin, Solid State Phenomena, 3&4, 215 (1988).

    Google Scholar 

  4. A. Blatter and M. von Allmen, Phys. Rev. Lett. 54,2103 (1985).

    Article  ADS  Google Scholar 

  5. E. Gaffet, J. Mat. Sci. and Eng., to be published (1989).

    Google Scholar 

  6. L. E. Rehn, P. R. Okamoto, J. Pearson, R. Bhadra and M. Grimsditch, Phys. Rev. Lett., 59, 2987 (1987).

    Article  ADS  Google Scholar 

  7. W. L. Johnson, Progress in Mat. Sci., 30, 81 (1986).

    Article  ADS  Google Scholar 

  8. R. W. Cahn and W. L. Johnson, J. Mat. Res., 1, 724 (1986).

    Article  ADS  Google Scholar 

  9. H. Mori, H. Fujita, M. Tendo and M. Fujita, Scripta Met., 18,783 (1984).

    Article  Google Scholar 

  10. E. E. Havinga, H. Damsa and P. Hokkeling, J. of the Less-Common Met., 27, 169 (1972).

    Article  Google Scholar 

  11. F. Ducastelle, J. de Physique. 31,1055 (1970).

    Article  Google Scholar 

  12. C. Massobrio, V. Pontikis and G. Martin, Phys. Rev. Lett., 62, 1142 (1989); (b) ibid, to be published.

    Article  ADS  Google Scholar 

  13. F. R. Eshelman and J. F. Smith, J. Appl. Phys., 46, 5080 (1975).

    Article  ADS  Google Scholar 

  14. M. P. Henaff, C. Colinet A. Pasturel and K. H. J. Buschow, J. Appl. Phys., 56, 307 (1984).

    Article  ADS  Google Scholar 

  15. V. Rosato, M. Guillopé and B. Legrand, Phil. Mag., A59, 321 (1989).

    ADS  Google Scholar 

  16. C. Kittel, Introduction à la Physique de Vétat Solide, Dunod, Paris (1972).

    Google Scholar 

  17. G. B. Skinner, J. W. Edwards and H. L. Johnston, J. Am. Chem. Soc., 73, 174 (1951).

    Article  Google Scholar 

  18. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregates Properties, MIT Press, Cambridge (1971).

    Google Scholar 

  19. A. R. Kaufmann and T. T. Magel, in Metallurgy of Zirconium, B. Lustman and F. Kerze, Eds., Mc Graw Hill (1955) p.377.

    Google Scholar 

  20. S. Nosé, J. Chem. Phys., 81,511 (1984).

    Article  ADS  Google Scholar 

  21. H. C. Andersen, J. Chem. Phys., 72, 2384 (1980).

    Article  ADS  Google Scholar 

  22. F. A. Lindemann, Z. Physik. 11,609 (1910).

    Google Scholar 

  23. A. E. Lee, G. Etherington and C. N. J. Wagner, J. of Non-Cryst. Sol., 61&62, 349 (1984).

    Article  ADS  Google Scholar 

  24. A. E. Lee, S. Jost, C. N. J. Wagner and L. E. Tanner, J. de Physique, 46, C8 (1985).

    Google Scholar 

  25. T. Mizoguchi, S. Yoda, N. Akutsu, S. Yamada, J. Nishioka, T. Suemasa and N. Watanabe Int. Conf. on Rapidly Quenched Metals,Eds. F. Steeb and H. Warlimont (Wurtzbourg, Germany, September 3–7,1984) North-Holland, p. 483 (1985).

    Google Scholar 

  26. M. Guillopé, G. Ciccotti and V. Pontikis, Surf. Sci., 144, 67 (1984).

    Article  ADS  Google Scholar 

  27. T. Egami and Y. Waseda, J. of Non-Cryst. Sol., 64,113 (1984).

    Article  ADS  Google Scholar 

  28. A. M. Vredenberg, J. F. M. Westendorp, F. W. Saris, N. M. van der Pers and Th. H. de Keijser, J. Mater. Res., 1, 774 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Massobrio, C., Pontikis, V. (1990). Amorphization Induced by Chemical Disorder in Crystalline NiZr2 : A Molecular Dynamics Study Based on a N-Body Potential. In: Mareschal, M. (eds) Microscopic Simulations of Complex Flows. NATO ASI Series, vol 236. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1339-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1339-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1341-0

  • Online ISBN: 978-1-4684-1339-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics