Microscopic Simulations of Instabilities

  • M. Mareschal
Part of the NATO ASI Series book series (NSSB, volume 236)


In the early stage of the development of Molecular Dynamics (MD) the perspective of dealing with particles in order to solve problems in non-linear high-speed aerodynamics and boundary layers was already present1. However most of the results obtained in the last thirty years or so mainly concerned equilibrium properties. In this field, some very interesting, and to some extent unexpected, results were obtained: the velocity correlation function in an atomic dense fluid has been measured by Rahman2 and later explained on the basis of the motion of a sphere in a continuous compressible fluid3, with a frequency dependent viscosity. The continuum hydrodynamic equations seem to be a good model for the fluid motion up to very small distances and times at equilibrium4. And even when the simple hydrodynamic picture seems to become inadequate, models have been proposed which consist in generalizing hydrodynamics to include a possible dependence of the transport coefficients in the wave vector and frequency5,6.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. J. Alder, T. Wainwright, in Transport Processes in Statistical Mechanics, I. Prigogine (editor), J. Wiley-Intersdence, New York (1958).Google Scholar
  2. 2.
    A. Rahman, Phys. Rev. 136, 405 (1964)ADSCrossRefGoogle Scholar
  3. 3.
    R. Zwanzig and M. Bixon, Phys. Rev. A2, 2005 (1970)ADSGoogle Scholar
  4. 4.
    W. E. Alley, B. J. Alder, S. Yip, Phys. Rev. A27,3174 (1983)ADSGoogle Scholar
  5. 5.
    W. E. Alley and B. J. Alder, Phys. Rev. A27, 3158 (1983).ADSGoogle Scholar
  6. 6.
    J. P. Boon, S. Yip, Molecular Hydrodynamics, Mac Graw-Hill, New York (1980)Google Scholar
  7. 7.
    W. G. Hoover and W. T. Ashurst, in Theoretical Chemistry. vol 1: Advances and perspectives (Academic Press, New York, 1975)Google Scholar
  8. W. W. Wood in Fundamental Problems in Statistical Mechanics III, E. G. D. Cohen editor, North-Holland, (1975)Google Scholar
  9. 9.
    A. Tenenbaum, G. Ciccotti, R. Gallico, Phys. Rev. A25, 2778 (1982)ADSGoogle Scholar
  10. C. Trozzi and G. Ciccotti, Phys. Rev. A29, 916 (1984)ADSGoogle Scholar
  11. 10.
    B. L. Hollan, W. G. Hoover, B. Moran, G. K. Straub, Phys. Rev. A22, 2798 (1980)ADSGoogle Scholar
  12. 11.
    E. Meiburg, Phys. Fluids, 29, 3107 (1986)ADSCrossRefGoogle Scholar
  13. 12.
    G. A. Bird, Molecular Gas Dynamics. Clarendon Press, Oxford (1976)Google Scholar
  14. 13.
    D. C. Rapaport, E. Clementi, Phys. Rev. Lett. 57, 695 (1987)ADSCrossRefGoogle Scholar
  15. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford (1961).MATHGoogle Scholar
  16. 15.
    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems, J. Wiley, New York (1977)MATHGoogle Scholar
  17. 16.
    L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Pergamon Press, London (1958)Google Scholar
  18. P. Resibois, M. Deleener, Classical Eanetic Theory of fluids, J. Wiley- Intersdence, New York (1977)Google Scholar
  19. 18.
    J.A. Barker, D. E. Henderson, Rey. Mod. Phys. 48, 587 (1976)MathSciNetADSCrossRefGoogle Scholar
  20. 19.
    J. J. Erpenbeck, W. W. Wood, in Modern Theoretical Chemistry, edited by B. J. Berne, vol.6B, Van Nostrand-Reinhold, New York (1983)Google Scholar
  21. 20.
    A. L. Garcia, M. Malek Mansour, G. C. Lie, E. Clementi, J. Stat. Phys. 47,209(1987)ADSMATHCrossRefGoogle Scholar
  22. 21.
    D. M. Gass, J. Chem. Phys. 54,1898 (1971).ADSCrossRefGoogle Scholar
  23. 22.
    M. Mareschal, M. Malek Mansour, A. Puhl, E. Kestemont, Phys. Rey. Lett. 61, 2550 (1988)ADSCrossRefGoogle Scholar
  24. A. Puhl, M. Malek-Mansour and M. Mareschal, Phys. Rev.A40,1999 (1989)ADSGoogle Scholar
  25. 23.
    G. Nicohs AND M. Malek-Mansour, Phys. Rev. A29, 2845 (1984)ADSGoogle Scholar
  26. 24.
    G. Nicohs, A. Amellal, G. Dupont, M. Mareschal, J. Mol. Liq. 41,5 (1989)CrossRefGoogle Scholar
  27. A. L. Garcia, M. Malek-Mansour, G. C. Lie, E. Clementi, J. Stat. Phys. 47,209 (1987); see also the contribution by A. Garda in this yolxmie.ADSMATHCrossRefGoogle Scholar
  28. 26.
    J. Boissonade, Phys. Lett. 74A, 285 (1979); ibid., Physica 113A, 607 (1982); P. Ortoleya and S. Yip, J. Chem. Phys., 65, 2045 (1976)Google Scholar
  29. 27.
    A. A. Frost, R. G. Pearson, Kinetics and Mechanism, J. Wiley and sons. New York (1961)Google Scholar
  30. see for instance.
    G. Nicohs, in Order and Fluctuations in Equilibrium and Npn-equilibrium Statistical Mechanics, G. Nicohs, G. Dewel and J. W. Turner, editors, J. Wiley, New York (1981)Google Scholar
  31. see also P. H. Richter, I. Procaccia and J. Ross, Chemical Instabilities, Adv. Chem. Phys. 217–268 (1980)Google Scholar
  32. Scharmer, R S. Grossmann, P. H. Richter, Z. Phys. B35, 363–381 (1978).ADSGoogle Scholar
  33. 29.
    R. Monaco, (editor) Discrete Kinetic Theory. Lattice Gas Dynamics and the Foundations of Hydrodynamics, World Scientific, Singapore (1989).Google Scholar
  34. 30.
    see for instance the contribution of S. ZaleskL in the reference 24. 31G. A. Bird in this volxmae.Google Scholar
  35. 32.
    J. Koplik, J. R. Banavar, J. F. Willemsen, Phys. Fluids. A1, 781 (1989)ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • M. Mareschal
    • 1
  1. 1.CP231, Université Libre de BruxellesBrusselsBelgium

Personalised recommendations