Skip to main content

The Cloning and Characterization of a Candidate Gene for the Correction of the Xeroderma D Defect

  • Chapter
DNA Repair Mechanisms and Their Biological Implications in Mammalian Cells

Part of the book series: NATO ASI Series ((NSSA,volume 182))

  • 88 Accesses

Abstract

DNA from a repair competent hamster cell line, ligated to a dominant selectable marker, was transfected into immortalised xeroderma D cells. Two rounds of transfection resulted in the isolation of a cell line with UV-induced excision repair capability similar to that of a primary transfectant but with few integrated copies of both marker and hamster DNA sequences. Cosmid rescue of the dominant marker from secondary transfectant DNA gave rise to several clones, two of which contain hamster DNA sequences and confer increased survival to UV on transfection into two, independently-immortalised xeroderma D cell lines, but not on transfection into a xeroderma A line. Restriction enzyme analysis revealed a 13 kilobase overlap between these 2 cosmids; no similarities to the previously isolated UV excision repair genes ERCC1 and 2 were evident. A non-repetitive portion of the overlap region, when used to probe total cellular RNA, showed that the gene is expressed to varying degrees in all cell lines tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrand, J.E., N.M. Bone, S. Squires and R.T. Johnson, 1988. Isolation of hamster DNA sequences which partially restore excision repair in xeroderma D cells, In: “Mechanisms and consequences of DNA damage processing”. UCLA Symposia on molecular and cellular biology, New series, Vol. 83. E. Friedberg and P. Hanawalt eds. Alan R. Liss Inc., New York.

    Google Scholar 

  • Arrand, J.E., S. Squires, N.M. Bone and R.T. Johnson, 1987. Restoration of UV-induced excision repair in xeroderma D cells transfected with the denV gene of bacteriophage T4. EMBO J., 6:3125.

    PubMed  CAS  Google Scholar 

  • Bohr, V.A., C.A. Smith, D.S. Okumoto and P.C. Hanawalt, 1985. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell, 40:359.

    Article  PubMed  CAS  Google Scholar 

  • Bone N.M. and J.E. Arrand, A cloned probe for hamster Alu-equivalent repetitive sequences. Gene (in press).

    Google Scholar 

  • Brady, G., A. Funk, J. Mattern, G. Schutz and R. Brown, 1985. Use of gene transfer and a novel cosmid rescue strategy to isolate transforming sequences. EMBO J., 4:2583.

    PubMed  CAS  Google Scholar 

  • Collins, A. and R.T. Johnson, 1987. DNA repair mutants in higher eukaryotes. J. Cell Sci. Suppl., 6:61.

    PubMed  CAS  Google Scholar 

  • Fornace, A. J., K.W. Kohn and H.E. Kann, 1976. DNA single-strand breaks during repair of UV damage in human fibroblasts and abnormalities of repair in xeroderma pigmentosum. Proc. Natl. Acad. Sci. USA, 73:39.

    Article  PubMed  CAS  Google Scholar 

  • Giannelli, F., S.A. Pawsey and J.A. Avery, 1982. Differences in patterns of complementation of the more common groups of xeroderma pigmentosum: possible implications. Cell, 29:451.

    Article  PubMed  CAS  Google Scholar 

  • Hoeijmakers, J.H.J., H. Odijk and A. Westerveld, 1987. Differences between rodent and human cells in the amount of integrated DNA after transfection. Exp. Cell Res., 169:111.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R.T., S. Squires, G.C. Elliott, G.L.E. Koch and A. J. Rainbow, 1985. Xerodemna pigmentosum D-HeLa hybrids with low and high ultraviolet sensitivity associated with normal and diminished DNA repair ability, respectively. J. Cell Sci., 74:115.

    Google Scholar 

  • Kraemer, K.H., M.M. Lee and J. Scotto, 1987. Xeroderma pigmentosum: cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch. Dermatol., 123:241.

    Article  PubMed  CAS  Google Scholar 

  • Little, P.F.R., 1987. Choice and use of cosmid vectors, In: “DNA cloning volume III: A practical approach”. D.M. Glover ed. IRL Press Oxford.

    Google Scholar 

  • Mayne, L.V., T. Jones, S.W. Dean, S.A. Harcourt, J.E. Lowe, A. Priestley, H. Steingrimsdottir, H. Sykes, M.H.L. Green and A.R. Lehmann, 1988. SV4O-transfomned normal and DNA-repair-deficient human fibroblasts can be transfected with high frequency but retain only limited amounts of integrated DNA. Gene, 66:65.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, D.L., R.M. Humphrey, G.A. Adair, L.H. Thompson and J.M. Clarkson, 1988. Repair of (6-4) photoproducts correlates with split-dose recovery in UV-irradiated normal and hypersensitive rodent cells. Mutat. Res., 193:53.

    Article  PubMed  CAS  Google Scholar 

  • Murray, A.M., E. Drobetsky and J.E. Arrand, 1984. Cloning the complete human adenine phosphoribosyl transferase gene. Gene, 31:233.

    Article  PubMed  CAS  Google Scholar 

  • Protic-Sablijic, M., S. Seetharam, M.M. Seidman and K.H. Kraemer, 1986. An SV40-transformed xeroderma pigmentosum group D cell line: establishment, ultra-violet sensitivity, transfection efficiency and plasmid mutation induction. Mutat. Res., 166:287.

    Article  Google Scholar 

  • Royer-Pokora, B. and W.A. Haseltine, 1984. Isolation of UV-resistant revertants from a xeroderma pigmentosum group A cell line. Nature, 311:390.

    Article  PubMed  CAS  Google Scholar 

  • Takebe, H., S. Nii, M. Ishii and H. Utsumi, 1974. Comparative studies of host cell reactivation, colony forming ability and excision repair after UV irradiation of xeroderma pigmentosum, normal human, and some other mammalian cells. Mutat. Res., 25:383.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, L.H., C.L. Mooney and K.W. Brookman, 1985. Genetic complementation between UV-sensitive CHO mutants and xeroderma pigmentosum fibroblasts. Mutat. Res., 150:423.

    Article  PubMed  CAS  Google Scholar 

  • van Duin, M., M.H.M. Koken, J. van den Tol, P.ten Dijke, H. Odijk, A. Westerveld, D. Bootsma and J.H.J. Hoeijmakers, 1987. Genomic characterisation of the human DNA excision repair gene ERCC1. Nucleic Acids Res., 15:9195.

    Article  PubMed  CAS  Google Scholar 

  • Weber, C.A., E.P. Salazar, S.A. Stewart and L.H. Thompson, 1988. Molecular cloning and biological characterisation of a human gene, ERCC2, which corrects the nucleotide excision repair defect in CHO UV5 cells. Mol. Cell. Biol., 8:1137.

    PubMed  CAS  Google Scholar 

  • Westerveld, A., J.H.J. Hoeijmakers, M. van Duin, J. de Wit, H. Odijk, A. Pastink, R.D. Wood and D. Bootsma, 1984. Molecular cloning of a human DNA repair gene. Nature, 310:425.

    Article  PubMed  CAS  Google Scholar 

  • Wood, R.D., P. Robbins and T. Lindahl, 1988. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell, 53:97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Arrand, J.E., Bone, N.M., Johnson, R.T. (1989). The Cloning and Characterization of a Candidate Gene for the Correction of the Xeroderma D Defect. In: Lambert, M.W., Laval, J. (eds) DNA Repair Mechanisms and Their Biological Implications in Mammalian Cells. NATO ASI Series, vol 182. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1327-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1327-4_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1329-8

  • Online ISBN: 978-1-4684-1327-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics