Chinese Hamster Cell Lines Defective in DNA Repair

  • Magorzata Z. Zdzienicka
  • J. W. I. M. Simons
  • P. H. M. Lohman
Part of the NATO ASI Series book series (NSSA, volume 182)


Four different general categories of mutants defective in cellular response to UV, X-rays, cross-linking and alkylat-ing agents were isolated from Chinese hamster cell lines. Novel types of mutants are described. A new 7th complementation group in the class of UV-sensitive mutants was found. Amongst two complementation groups of X-ray-sensitive mutants, one group resembles Ataxia-telangiectasia cells. Three complementation groups were identified amongst mutants sensitive to cross-linking agents; one mutant (V-H4) is homologous to Fanconi’s anemia.


Chinese Hamster Ovary Cell Nucleotide Excision Repair Ataxia Telangiectasia Xeroderma Pigmentosum Complementation Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Collins, A. and R.T. Johnson, 1987, DNA repair mutants in higher eukaryotes, J. Cell Sci. Suppl., 6:61.PubMedGoogle Scholar
  2. Duckworth-Rysiecki, G., Cornish, K., Clarke, C.A., and Buchwald, M., 1985, Identification of two complementation groups in Fanconi anemia, Somatic Cell and Molec. Genet., 11:35.CrossRefGoogle Scholar
  3. Fischer, E., Keijzer, W., Thielmann, H.W., Popanda, O., Bohnert, E., Edler, L., Jung, E.G., and Bootsma, D., 1985, A ninth complementation group in Xeroderma pigmen-tosum, Mutation Res., 145:217.PubMedCrossRefGoogle Scholar
  4. Friedberg, E.C., 1985, DNA repair, Freeman and Co., New York.Google Scholar
  5. Friedberg, E.C., 1987, The molecular biology of nucleotide excision repair of DNA: Recent progress, J. Cell Sci. Suppl., 6:1.PubMedGoogle Scholar
  6. Fuller, L.F., and Painter, R.B., 1988, A Chinese hamster ovary cell line hypersensitive to ionizing radiation and deficient in repair replication, Mutation Res., 193:109.PubMedCrossRefGoogle Scholar
  7. Hickson, I.D., and Harris, L., 1988, Mammalian DNA repair — use of mutants hypersensitive to cytotoxic agents, Trendsin Genetics, 4:101.CrossRefGoogle Scholar
  8. Hoy, C.A., Thompson, L.H., Mooney, C.L., and Salazar, E.P., 1985, Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents, Cancer Res., 45:1737.PubMedGoogle Scholar
  9. Jaspers, N.G.J., and Bootsma, D., 1982, Genetic heterogeneity in AT studied by cell fusion, Proc. Natl. Acad. Sci. USA, 79:2641.PubMedCrossRefGoogle Scholar
  10. Jeggo, P.A., and Kemp, L.M., 1983, X-ray-sensitive mutants of Chinese hamster ovary cell line. Isolation and cross-sensitivity to other DNA-damaging agents, Mutation Res., 112:313.PubMedCrossRefGoogle Scholar
  11. Jeggo, P.A., 1985, Genetic analysis of X-ray-sensitive mutants of the CHO cell line, Mutation Res., 146:265.PubMedCrossRefGoogle Scholar
  12. Jeggo, P.A., and Holliday, R., 1986, Azacytidine-induced reactivation of a DNA repair gene in Chinese hamster ovary cells, Mol, and Cellular Biol., 6:2944.Google Scholar
  13. Jones, N.J., Cox, R., and Thacker, J., 1987, Isolation and cross-sensitivity of X-ray-sensitive mutants of V79-4 hamster cells, Mutation Res., 183:279.PubMedCrossRefGoogle Scholar
  14. Kaina, B., 1987, Correction of alkylation hypersensitivity of CHO-W27-1 cells by transfection with human DNA, Car-cinocrenesis, 8:1935.Google Scholar
  15. Meuth, M., 1983, Deoxycytidine kinase-deficient mutant of Chinese hamster ovary cells are hypersensitive to DNA alkylating agents, Mutation Res., 110:383.PubMedCrossRefGoogle Scholar
  16. Murnane, J.P., and Painter, R.B., 1982, Complementation of the defects in DNA synthesis in irradiated and unirradiated AT cells, Proc. Natl. Acad. Sci. USA, 79:1960.PubMedCrossRefGoogle Scholar
  17. Robson, C.N., and Hickson, I.D., 1986, Genetic analysis of mitomycin C-sensitive mutant of a Chinese hamster ovary cell line, Mutation Res., 163:201.PubMedCrossRefGoogle Scholar
  18. Robson, C.N., and Hickson, I.D., 1987, Isolation of alkylating agents-sensitive Chinese hamster ovary cell, Carcinocren-esis, 8:601.CrossRefGoogle Scholar
  19. Rubin, J.S., Joyner, A.L., Bernstein, A., and Whitmore, G.F., 1983, Molecular identification of a human DNA repair gene following DNA-mediated gene transfer, Nature, 306:206.PubMedCrossRefGoogle Scholar
  20. Rubin, J.S., Prideaux, V.R., Willard, H.F., Dulhanty, A.M., Whitmore, G.F., and Bernstein, A., 1985, Molecular cloning and chromosomal localization of DNA sequences associated with human DNA repair gene, Molec. Cell.Biol., 5:398.PubMedGoogle Scholar
  21. Siciliano, M.J., Stallings, R.L., Adair, G.M., Humphrey, R.M., and Siciliano, J., 1983, Provisional assignment of TPI, GPI, and PEPD to Chinese hamster autosomes 8 and 9: a cytogenetic basis for functional haploidy of an autosomal linkage group in CHO cells, Cytoqenet. Cell Genet., 35:15.CrossRefGoogle Scholar
  22. Siminovitch, L., 1976, On the nature of hereditable variations in culture somatic cells, Cell, 7:1.PubMedCrossRefGoogle Scholar
  23. Sinha, B.K., Trush, M.A., Kennedy, K.A., and Mimnaugh, E.G., 1984, Enzymatic activation and binding of adriamycin to nuclear DNA, Cancer Res., 44:2892.PubMedGoogle Scholar
  24. Stefanini, M., Keijzer, W., Westerveld, A., and Bootsma, D., 1985, Interspecies complementation analysis of xeroderma pigmentosum and UV-sensitive Chinese hamster cells, Exp.Cell Res., 161:373.PubMedCrossRefGoogle Scholar
  25. Tewey, K.M., Chen, G.L., Nelson, E.M., and Liu, L.F., 1984, Intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA with topoisomerase II, J. Biol. Chem., 259:9182.PubMedGoogle Scholar
  26. Thompson, L.H., Busch, D.B., Brookman, K., Mooney, C.L., and Glaser, D.A., 1981, Genetic diversity of UV-sensitive DNA repair mutants of Chinese hamster ovary cells, Proc. Nat.Acad. Sci., U.S.A., 78:3734.CrossRefGoogle Scholar
  27. Thompson, L.H., and Carrano, A.V., 1983, Analysis of mammalian cell mutagenesis and DNA repair using in vitro selected CHO cell mutants. In: Cellular responses to DNA damage, UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 11 (ed. E.C. Friedberg and B.A. Bridges), pp 125–143, New York, Alan R. Liss.Google Scholar
  28. Thompson, L.H., Mooney, C.L., and Brookman, K.W., 1985, Genetic complementation between UV-sensitive CHO mutants and xeroderma pigmentosum fibroblasts, Mutation Res., 150:423.PubMedCrossRefGoogle Scholar
  29. Thompson, L.H., Salazar, E.P., Brookman, K.W., Collins, C.C., Stewart, S.A., Busch, D.B., and Weber, C.A., 1987, Recent progress with the DNA repair mutants of Chinese hamster ovary cells. In: The Molecular Biology of DNA Repair, J.Cell Sci. Suppl., 6:97.PubMedGoogle Scholar
  30. Weber, C.A., Salazar, E.P., Stewart, S.A., and Thompson, L.H., 1988, Molecular cloning and biological characterization of a human gene, ERCC2, that corrects the nucleotide excision repair defect in CHO UV5 cells, Mol. Cell.Biol., 8:1137.PubMedGoogle Scholar
  31. Westerveld, A., Hoeijmakers, J.H.J., Duin, M. van, Wit, J. de, Odijk, H., Pastink, A., Wood, R.D., and Bootsma, D., 1984, Molecular cloning of a human DNA repair gene, Nature, 310:425.PubMedCrossRefGoogle Scholar
  32. Wood, R.D., and Burki, H.J., 1982, Repair capability and the cellular age response for killing and mutation induction after UV, Mutation Res., 95:505.PubMedCrossRefGoogle Scholar
  33. Zdzienicka, M.Z., and Simons, J.W.I.M., 1986, Analysis of repair processes by the determination of the induction of cell killing and mutations in two repair-deficient Chinese hamster ovary cell lines, Mutation Res., 166:59.PubMedCrossRefGoogle Scholar
  34. Zdzienicka, M.Z., and Simons, J.W.I.M., 1987, Mutagen-sensi-tive lines are obtained with a high frequency in V79 Chinese hamster cells, Mutation Res., 178:235.PubMedCrossRefGoogle Scholar
  35. Zdzienicka, M.Z., Roza, L., Westerveld, A., Bootsma, D., and Simons, J.W.I.M., 1987, Biological and biochemical consequences of the human ERCC1 repair gene after transfection into a repair-deficient CHO cell line, Mutation Res., 183:69.PubMedCrossRefGoogle Scholar
  36. Zdzienicka, M.Z., Schans, G.P. van der, Westerveld, A., Zeeland, A.A. van, and Simons, J.W.I.M., 1988a, Pheno-typic heterogeneity within the first complementation group of UV-sensitive mutants of Chinese hamster cell lines, Mutation Res., 193:31.PubMedGoogle Scholar
  37. Zdzienicka, M.Z., Schans, G.P. van der, and Simons, J.W.I.M., 1988b, Identification of a new seventh complementation group of UV-sensitive mutants in Chinese hamster cells, Mutation Res., 194:165.PubMedCrossRefGoogle Scholar
  38. Zdzienicka, M.Z., Tran, Q., Schans, G.P. van der, and Simons, J.W.I.M., 1988c, Characterization of an X-ray sensitive mutant of V79 Chinese hamster cells, Mutation Res., 194:239.PubMedCrossRefGoogle Scholar
  39. Zdzienicka, M.Z., Jaspers, N.G.J., Schans, G.P. van der, Natarajan, A.T., and Simons, J.W.I.M., 1989. Ataxia-telangiectasia-like Chinese hamster V79 cell mutants with radioresistant DNA synthesis, chromosomal instability, and normal DNA strand break repair, Cancer Res., 49:1481–1485.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Magorzata Z. Zdzienicka
    • 1
  • J. W. I. M. Simons
    • 1
  • P. H. M. Lohman
    • 1
  1. 1.Department of Radiation Genetics and Chemical MutagenesisState University of Leiden, Sylvius LaboratoriesLeidenThe Netherlands

Personalised recommendations