Mismatch Repair Patterns in Simian Cells Correlate with the Specificity of a Mismatch Binding Protein Isolated from Simian and HeLa Cells

  • J. Jiricny
  • T. C. Brown
  • N. Corman
  • B. B. Rudkin
Part of the NATO ASI Series book series (NSSA, volume 182)


Mismatches are formed in DNA during recombination of homologous but nonidentical sequences, as errors of DNA replication, and during the spontaneous hydrolytic deamination of 5-methylcytosine (Modrich, 1987). The efficiency and specificity of mismatch correction thus influences the outcome of genetic events such as gene conversion (Holliday, 1974; White, et al., 1985; Kourilsky, 1986), homogenization of repeated sequence families (Dover, 1986), generation of antibody diversity (Baltimore, 1974; Kunkel, et al., 1986), and DNA replication fidelity (Hare and Taylor, 1985; Reyland and Loeb, 1987). In addition, specific repair of G/T mismatches to G/C may stabilize patterns of 5-methylcytosine distribution (Brown and Jiricny, 1987).


Mismatch Repair Short Patch Specific Repair Parental Strand Mismatch Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baltimore, D., 1974. Is terminal deoxynucleotidyl transferase a somatic mutagen in lymphocytes? Nature. 248:409–411.PubMedCrossRefGoogle Scholar
  2. Barker, D., M. Schafer and R. White, 1984. Restriction sites containing CpG show a higher frequency of polymorphism in human DNA, Cell, 36:131–138.PubMedCrossRefGoogle Scholar
  3. Bird, A.P., 1987. CpG islands as gene markers in the vertebrate nucleus, Trends in Genet., 3:342–347.CrossRefGoogle Scholar
  4. Bird, A.P., 1986. CpG-rich islands and the function of DNA methylation, Nature. 321:209–213.PubMedCrossRefGoogle Scholar
  5. Bird, A.P., 1980. DNA methylation and the frequency of CpG in animal cells, Nucl. Acids Res., 8:1499–1504.PubMedCrossRefGoogle Scholar
  6. Bird, A.P., 1978. Use of restriction enzymes to study eucaryotic DNA methylation. II. The symmetry of methylated sites supports semiconservative copying of the methylation patterns, J. Mol. Biol., 118:49–60.PubMedCrossRefGoogle Scholar
  7. Brown, T.C. and J. Jiricny, 1987. A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine. Cell, 50:94 5–950.Google Scholar
  8. Cedar, H., A. Solange, G. Glaser and A. Razin, 1979. Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI, Nucl. Acids Res., 6:2125–2132.PubMedCrossRefGoogle Scholar
  9. Coulondre, C., J.H. Miller, P.J. Farabaugh and W. Gilbert, 1978. Molecular basis of base substitution hotspots in Esherichia coli, Nature, 274:775–780.PubMedCrossRefGoogle Scholar
  10. Doerfler, W., 1983. DNA methylation and gene activity, Ann. Rev. Biochem., 52:93–124.PubMedCrossRefGoogle Scholar
  11. Dover, G.A., 1986. Molecular drive in multigene families:how biological novelties arise, spread and are assimilated. Trends in Genet., 2:159–165.CrossRefGoogle Scholar
  12. Fishel, R.A., E.C. Siegel and R. Kolodner, 1986. Gene conversion in Escherichia coli. Resolution of heteroallelic mismatched nucleotides by co-repair, J. Mol. Biol., 188: 147–157.PubMedCrossRefGoogle Scholar
  13. Fishel, R.A., E.C. Siegel and R. Kolodner, 1983. The identification of two repair pathways for mismatched nucleotides, UCLA Symp. Mol. Cell. Biol., 11:309–326.Google Scholar
  14. Fried, M.G. and D.M. Crothers, 1983. CAP and RNA polymerase interactions with the lac promotor: binding stoichiometry and long range effects, Nucleic Acids Res., 11:141–158.PubMedCrossRefGoogle Scholar
  15. Gama-Soza, M.A., V.A. Slagel, R.W. Trewyn, R. Oxenhandler, K.C. Kuo, C.W. Gehrke and M. Ehrlich, 1983. The 5-methylcytosine content of DNA from human tumors, Nucl. Acids Res., 11:6883–6894.CrossRefGoogle Scholar
  16. Hare, J. and H. Taylor, 1985. One role of DNA methylation in vertebrate cells is strand discrimination in mismatch repair. Proc. Natl. Acad. Sci. (USA) 82:7350–7354.CrossRefGoogle Scholar
  17. Holliday, R., 1979. A new theory of carcinogenesis, Br. J. Cancer, 40:513–522.PubMedCrossRefGoogle Scholar
  18. Holliday, R., 1974. Molecular aspects of genetic exchange and gene conversion, Genetics. 78:273–287.PubMedGoogle Scholar
  19. Jones, M., R. Wagner and M. Radman, 1987. Mismatch repair of deaminated 5-methyl-cytosine, J. Mol. Biol., 194:155–159.PubMedCrossRefGoogle Scholar
  20. Kastan, M.N., B.J. Gowans and M.W. Lieberman, 1982. Methylation of deoxycytidine incorporated by excision-repair synthesis of DNA, Cell, 30:509–516.PubMedCrossRefGoogle Scholar
  21. Kourilsky, P., 1986. Molecular mechanisms for gene conversion in higher cells, Trends in Genet. 2:60–63.CrossRefGoogle Scholar
  22. Kunkel, T.A., K.P. Gopinathan, D.K. Dube, E.T. Snow and L.A. Loeb, 1986. Rearrangements of DNA mediated by terminal transferase. Proc. Natl. Acad. Sci. (USA) 83:1867–1871.CrossRefGoogle Scholar
  23. Lieb, M., 1985. Recombination in the lambda repressor gene: evidence that very short patch (VSP) mismatch correction restores a specific sequence. Mol. Gen. Genet., 199:465–470.PubMedCrossRefGoogle Scholar
  24. Lieb, M., E., Allen and D. Read, 1986. Very short patch mismatch repair in phage lambda: repair sites and length of repair tracts, Genetics, 114:1041–1060.PubMedGoogle Scholar
  25. Lindahl, T., 1982. DNA repair enzymes, Ann. Rev. Biochem., 51: 61–87.PubMedCrossRefGoogle Scholar
  26. Manley, J.L., 1984. Transcription of eukaryotic genes in a whole-cell extract. In: Transcription and translation, a practical approach. B.D. Hames & S.J. Higgins (Eds.) IRL Press, Oxford, pp. 71–80.Google Scholar
  27. Modrich, P., 1987. DNA mismatch correction, Ann. Rev. Biochem. 56:435–466.PubMedCrossRefGoogle Scholar
  28. Radman, M. and R, Wagner, 1986. Mismatch repair in Escherichia coli. Ann. Rev. Genet. 20:523–538.PubMedCrossRefGoogle Scholar
  29. Razin, A., M. Szyf, T. Kafri, T. M. Roll, H. Giloh, S. Scarpa, D. Carotti and G.L. Cantoni, 1986. Replacement of 5-meth ylcytosine by cytosine: a possible mechanism for transient DNA methylation during differentiation, Proc. Natl. Acad. Sci. (USA) 83:2827–2831.CrossRefGoogle Scholar
  30. Reyland, M.E. and L.A. Loeb, 1987. On the fidelity of DNA replication, J. Biol. Chem. 262:10824–10830.PubMedGoogle Scholar
  31. Riggs A.D. and P.A. Jones, 1983. 5-Methylcytosine, gene regulation and cancer, Adv. Cancer Res., 40:1–30.PubMedCrossRefGoogle Scholar
  32. Saluz, H.-P., J. Jiricny. and J.P. Jost, 1986. Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA methylation of the overlapping estradiol/glucocorticoid receptor binding sites and tbnate of avian vitellogenin synthesis, Proc. Natl. Acad. Sci.(USA), 83:7167–7171.CrossRefGoogle Scholar
  33. Wang, R.Y.-H., K.C. Kuo, C.W. Gehrke, L.-H. Huang, and M. Ehrlich, 1982. Heat-and alkalai-induced deamination of 5-methylcytosine and cytosine residues in DNA, Biochem. Biophvs. Acta, 697:371–377.CrossRefGoogle Scholar
  34. White, J.H., K. Lusnak, and S. Fogel, 1985. Mismatch-specific post-meiotic segregation frequency in yeast suggests a heteroduplex recombination intermediate, Nature. 315:350–352.PubMedCrossRefGoogle Scholar
  35. Wilson, V.L. and P.A. Jones, Inhibition of DNA methylation by chemical carcinogens in vitro, Cell, 32:239–246.Google Scholar
  36. Zell, M.J. and H.-J. Fritz, 1987. DNA mismatch repair in Escherichia coli counteracting the hydrolytic deamination of 5-methyl-cytosine residues, EMBO J., 6:1809–1815.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • J. Jiricny
    • 1
  • T. C. Brown
    • 1
  • N. Corman
    • 1
  • B. B. Rudkin
    • 1
  1. 1.Friedrich Miescher-InstitutBaselSwitzerland

Personalised recommendations