In Vitro Strategies for Tropical Fruit Tree Improvement

  • Richard E. Litz


Vegetatively propagated tropical fruit trees can be highly sensitive to plant disease epidemics. These trees are usually very heterozygous and have long generation cycles (e.g., 7–20 years). Some tropical fruit species such as mangosteen, which is obligately apomictic (nucellar embryony), are recalcitrant to conventional plant breeding approaches. Strategies for the recovery of horticulturally useful plants from cell and tissue cultures have great potential for the improvement of tropical fruit species. De novo regeneration pathways have been described from explants of selected mature trees of perennial tropical fruit species in Anacardiaceae, Euphorbiaceae, Moraceae, Myrtaceae, Oxalidaceae, Rosaceae, Rubiaceae, Rutaceae, Sapindaceae and Sterculiaceae. The regeneration of tropical fruit trees and the application of the approaches for cultivar improvement are the subjects of this discussion.


Somatic Embryo Somatic Embryogenesis Embryogenic Callus Tropical Fruit Cultivar Improvement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammirato, P.V., 1987, Organization events during somatic embryogenesis. In: Plant Tissue and Cell Culture ( C.E. Green, D.A. Somers, W.P. Hackett and D.D. Biesboer, eds.), pp. 57–82, Alan R. Liss, New York.Google Scholar
  2. Anderson-Prouty, A.J. and Albersheim, P., 1975, Host-pathogen interactions, VIII. Isolation of a pathogen-synthesised fraction rich in glucan that elicits a defense response in the pathogen’s host, Plant Plnsiol., 56: 286–291.Google Scholar
  3. Button, J., Kochba, J. and Bornman, C.H., 1974, Fine structure of embryoid development from embryogenic ovular callus of `Shamouti’ orange (Citrus sinensis Osb. ), J. Exp. Bot., 25: 446–457.CrossRefGoogle Scholar
  4. Desai, H.V., Bhatt, P.N. and Mehta, A.R., 1986, Plant regeneration of Sapindus trifoliattrs L. (soapnut) through somatic embryogenesis, Plant Cell Rep., 3: 190–191.CrossRefGoogle Scholar
  5. DeWald, S.G., 1987, In vitro somatic embryogenesis and plant regeneration from mango (Mangifera indica L.) nucellar callus, Ph.D. Dissertation, Univ. of Florida, Gainesville, USA.Google Scholar
  6. Grosser, J.W., Gmitter, F.G. and Chandler, J.F., 1988a, Intergeneric somatic hybrid plants Of Citrus sinensis cv. `Hamlin’ and l’oncirus trifoliata cv. ‘Flying Dragon’, Plant Cell Rep (in press).Google Scholar
  7. Grosser, J.W., Gmitter, F.G. and Chandler, J.F., 1988b, Intergeneric somatic hybrid plants from sexually incompatible woody species, Citrus sinensis and Severinia disticha, Theor. Appl. Genet. (In Press).Google Scholar
  8. Hendrix, R.C., Litz, R.E. and Kirchoff, B.K., 1987, In vitro organogenesis and plant regeneration from leaves of Solarium candidurii Lindl., S. quirocnse Lam. (naranjilla) and S. sessiliflorumDuna], Plant Cell Tissue Organ Cult., 11: 67–73.CrossRefGoogle Scholar
  9. Kochba, J. and Spiegel-Roy, P., 1977, The effects of auxins, cytokinins and inhibitors on embryo-genesis in habituated ovular callus of the `Shamouti’ orange (Cirrussincnsis), Z. Pilanzenph siol., 81: 283–288.Google Scholar
  10. Kochba, J., Spiegel-Roy, P. and Saad, P., 1980, Selection for tolerance to sodium chloride (NaCI) and 2,4-dichlorophenoxyacetic acid (2,4-D) in ovular callus lines of Cirrus sinensis. In: Plant Cell Cultures: Results and Perspectives ( F. Sala, B. Parisi, R. Cella and O. Ciferri, eds.), pp. 187–192, Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  11. Kochba, J., Ben-Havyim, G., Spiegel-Roy, P., Saad, S. and Neumann, H., 1982, Effect of carbohydrates on somatic embryogenesis in sub-cultured nucellar callus of Citrus cultivars, Z Pflanzcnpinsiol., 105: 359–368.Google Scholar
  12. Litz, RE., 1984a, In vitro somatic embryogenesis from nucellar callus of monoembryonic Mangifera indica L., Hortscience, 19: 715–717.Google Scholar
  13. Litz, R.E., 1984b), In vitro responses of adventitious embryos of two polyembryonie Eugenia species, Ilortscience, 19: 720–722.Google Scholar
  14. Litz, R.E., 1984c, In vitro somatic embryogenesis from callus of jaboticaba, Myrciaria cauliflota, Hrtscience, 19: 62–64.Google Scholar
  15. Litz, R.E., 1985, Somatic embryogenesis in tropical fruit trees. In: Tissue Culture in Forestry and Agriculture (Litz, R.E., eds.), pp. 179–193, Plenum Press New York.Google Scholar
  16. Litz, R.E., 1987, Application of tissue culture to tropical fruits. In: Plant Tissue and Cell Culture ( C.E. Green, D.A. Sommers, W.P. Hackett and D.D. Biesboer, eds.), pp. 407–418, Alan R. Liss, New York.Google Scholar
  17. Litz, R.E., 1988, Somatic embryogenesis from cultured leaf explants of the tropical tree Euphoria longan Stend, J. Plant Plrssiol. (In Press).Google Scholar
  18. Litz, R.E. and Griffis,.LL. Jr., 1988, Carambola (Avcnlroa carambola L.). In: Biotechnology in Agriculture’and Forestry Trees 11 (Y.P.S. Bajaj, ed.), Springer-Verlag, Heidelberg (In Press).Google Scholar
  19. Litz, R.E., Knight, R.f. and S. Gazit, 1982, Somatic embryos from cultured ovules of polyembryonic Mangifera indica L., Plant Cell Rep., 1: 264–266.CrossRefGoogle Scholar
  20. Litz, R.E., Moore, G.A., and Srinivasan, C., 1985, In vitro systems for propagation and improvement of tropical fruits and palms, Ilortic. Rev., 7: 157–200.Google Scholar
  21. Lopez, P., Largnelet, A., Szabados, L., Roca, W.M. and Lenne, J., 1987, Effect of Colletotrrichum culture filtrates on growth of Stylosanthes sp. cell cultures, In: Proc. Intl. Cong. Plant Tissue Cul-titre, Colombia, pp. 52. Bogota (Abs.).Google Scholar
  22. Mahcshwari, P. and Rangaswamy, N.S., 1958, Polyembrvony and in vitro culture of embryos of Citrus and Mangifera, Indian J. Hamie., 15: 275–283.Google Scholar
  23. Mhatre, M., Bapat, V.A. and Rao, P.S., 1985, Regeneration of plants from the culture of leaves and axillary buds in mulberry (Morus indica L. ), Plant Cell Rep., 4: 78–80.CrossRefGoogle Scholar
  24. Moore, G.A., 1986, Factors affecting in vitro embryogenesis from undeveloped ovules of mature Citrus fruit, J. Am. Soc. Horde. Sci., 110: 66–70.Google Scholar
  25. Murashige, T. and Tucker, D.P.H., 1969, Growth factor requirements of citrus tissue culture. In: Proc. IstInt. Citrus Svmp. Vol. 3 ( H.D. Chapman, ed.), pp. 1115–1161, Univ. of California, Riverside.Google Scholar
  26. Nachmias, A., Barash, I., Solel, Z. and Strobel, G.A., 1977, Translocation of mai secco toxin in lemons and its effect on electrolyte leakage, transpiration and citrus callus growth, Phytoparasitica, 5: 94–103.CrossRefGoogle Scholar
  27. Navarro, L., 1981, Citrus shoot tip grafting in vitro (STG) and its applications: a review. In: Proc. Int. Soc. Citriculture, pp. 452–456.Google Scholar
  28. Ohgawara, T., Kobayashi, S., Ohgawara, E., Uchimija, H. and Ishii, S., 1985, Somatic hybrid plants obtained by protoplast fusion between Citrus sinensis and Poncirus trifoliata., Theor. Appl. Genet., 71: 1–4.CrossRefGoogle Scholar
  29. Rangan, T.S., Murashige, T. and Bitters, W.P., 1968, In vitro initiation of nucellar embryos in monoembryonic Citrus, Hortscience, 3: 226–227.Google Scholar
  30. Rangaswamy, N.S., 1961, Experimental studies on female reproductive structures of Cites microcmpa Bunge, Pfrytomorphologv, 11: 109–127.Google Scholar
  31. Sabharwal, P.S., 1962, In vitro culture of nucelli and embryos of Citrus aurantiifolia Swingle. In: Plant Embryology–A Symposium ( P. Maheshwari, ed.), pp. 239–243, CSIR, New Delhi.Google Scholar
  32. Sharp, W.R., Sondahl, M.R., Caldas, L.S. and Maraffa, S.B., 1980, The physiology of in vino asexual embryogenesis, Hortic. Rev., 2: 268–310.Google Scholar
  33. Sondahl, M.R. and Sharp, W.R., 1977, High frequency induction of somatic embryos in cultured leaf explants of Coffea arabica L., Z. Pflan_enplrvsiol., 81: 395–408.Google Scholar
  34. Spiegel-Roy, P., Kochba, J. and Saad, S., 1983, Selection for tolerance to 2,4-dichlorophenoxyacetic acid in ovular callus of orange (Citrus sinensis), Z. Pflanenphvsiol., 109: 41–48.Google Scholar
  35. Stevenson, F.F., 1956, The behaviour of Cirrus tissues and embryos in vitro, Ph.D. Dissertation, Univ. of Michigan, Ann Arbor, Michigan.Google Scholar
  36. Tisserat, B. and Murashige, T., 1977, Effects of ethephon, ethylene, and 2,4-dichlorophenoxyacetic acid on asexual embryogenesis in vitro, Plant I’hvsioi., 60: 437–439.CrossRefGoogle Scholar
  37. Vardi, A., 1981, Protoplast-derived plants from different Citrus species and cultivars. In: Proc. Lu. Soc. Cirriculture, ( 1981 ) 1: 149–152Google Scholar
  38. Vardi, A., Spiegel-Roy, P. and Galun, E., 1975, Citrus cell culture: Isolation of protoplasts, plating densities, effects of mutagens, and regeneration of embryos, Plant Sci. Lett., 4: 231–236.CrossRefGoogle Scholar
  39. Vardi, A., Spiegel-Roy P. and Galun, E., 1982, Plant regeneration from Citrus protoplasts: Variability in methodological requirements among cultivars and species, Theor. Apps. Genet., 62: 171–176.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Richard E. Litz
    • 1
  1. 1.Tropical Research and Education CenterUniversity of FloridaHomesteadUSA

Personalised recommendations