Advertisement

Superstring Phenomenology: An Overview

  • Michael Dine
Part of the The Subnuclear Series book series (SUS, volume 24)

Abstract

Elements of superstring phenomenology, as it presently exists, are reviewed. The coupling constants of string theory are identified. Classical solutions should be relevant at weak coupling; the connection to conformally invariant non-linear sigma models is explained. Compactifications on Calabi-Yau spaces and orbifolds which preserve N=1 supersymmetry are argued to be the most promising. Rather simple phenomenological considerations are shown to severely constrain the properties of the compact six dimensional space. The cosmological constant and the dilaton potential are discussed and we explain why, at weak coupling, there is probably no ground state which resembles our world.

Keywords

String Theory Cosmological Constant Yukawa Coupling Vertex Operator Supersymmetry Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For reviews, see: J.H. Schwarz, Phys. Rep. 89 (1982) 223;Google Scholar
  2. M.B. Green, Surveys in H.E. Physics 3 (1982) 127.Google Scholar
  3. 2.
    D.J. Gross, J.A. Harvey, E. Martinec, and R. Rohm, Phys. Rev. Lett. 54 (1985) 502PubMedCrossRefGoogle Scholar
  4. D.J. Gross, J.A. Harvey, E. Martinec, and R. Rohm, Nucl. Phys. B25 (1985) 253CrossRefGoogle Scholar
  5. D.J. Gross, J.A. Harvey, E. Martinec, and R. Rohm, Nucl. Phys. B267 (1986) 75.CrossRefGoogle Scholar
  6. 3.
    E. Witten, Phys. Lett. 149B (1984) 351.Google Scholar
  7. 4.
    P. Candelas, G. Horowitz, A. Strominger, and E. Witten, Nucl. Phys. B258 (1985) 75.Google Scholar
  8. 5.
    L. Dixon, J.A. Harvey, C. Vafa, and E. Witten, Nuclear Phys. B261 (1985) 678;Google Scholar
  9. L. Dixon, J.A. Harvey, C. Vafa, and E. Witten, “Strings on Orbifolds IP”, Princeton Preprint (1986).Google Scholar
  10. 6.
    M. Dine and N. Seiberg, Phys. Lett. 162B (1985) 299;Google Scholar
  11. 7.
    A.H. Chamseddine, Nucl. Phys. B185 (1981) 403;CrossRefGoogle Scholar
  12. E. Bergshoeff, M. de Roo, B. de Wit, and P. van Nieuwenhuysen, Nucl. Phys. B195 (1982) 97;Google Scholar
  13. G.F. Chapline and N.S. Manton, Phys. Lett. 120B (1983) 105.Google Scholar
  14. 8.
    M. Dine and N. Seiberg, Phys. Rev. Lett. 55 (1985) 366.PubMedCrossRefGoogle Scholar
  15. 9.
    E. Witten, Phys. Lett. 155B (1985) 151.Google Scholar
  16. 10.
    J.A. Shapiro, Phys. Rev. D11 (1975) 2937;Google Scholar
  17. 10.
    M. Ademollo et al., Nucl. Phys. B94 (1975) 221.CrossRefGoogle Scholar
  18. 11.
    C. Itzykson and J.B. Zuber, Quantum Field Theory, (McGraw Hill, 1985 ), p. 521.Google Scholar
  19. 12.
    This argument was developed in collaboration with N. Seiberg. Similar conclusions have been reached by E. Witten (private communication).Google Scholar
  20. 13.
    C.G. Callan, E.J. Martinec, M.J. Perry, and D. Friedan, Nucl. Phys. B262 (1985) 593.CrossRefGoogle Scholar
  21. 14.
    A. Sen, in Unified String Theories, edited by M. Green and D. Gross (World Scientific, 1986 ).Google Scholar
  22. 15.
    For a review, see D. Friedan, E. Martinec, and S. Shenker, “Conformal Invariance, Supersymmetry, and String Theory,” Princeton University preprint (1986).Google Scholar
  23. 16.
    A.M. Polyakov, Phys. Lett. 103B, 207 (1981).Google Scholar
  24. 17.
    D.H. Friedan, in Les Houches Summer School, 1982, edited by J.B. Zuber and R. Stora ( North Holland, Amsterdam, 1984 ).Google Scholar
  25. 18.
    L. Alvarez-Gaume and P. Ginsparg, in Anomalies, Geometry, Topology edited by W.A. Bardeen and A.R. White, (World Scientific (1985)).Google Scholar
  26. 19.
    S. Weinberg, Gravitation and Cosmology (Wiley (1972)).Google Scholar
  27. 20.
    C.M. Hull and E. Witten, Phys. Lett. 160B, 398 (1985).Google Scholar
  28. 21.
    D.Z. Freedman and P.K. Townsend, L. Alvarez-Gaume and D.Z. Freedman, Phys. Rev. D22 (1980) 846.Google Scholar
  29. 21.
    D.Z. Freedman and P.K. Townsend, L. Alvarez-Gaume and D.Z. Freedman, Commun. Math. Phys. 80 (1981) 282.Google Scholar
  30. 22.
    D. Zanon, M. Grisaru, and A. Van de Ven, Brandeis University Preprint (1986)Google Scholar
  31. C.N. Pope, M.F. Sohnius, and K.S. Stelle, Imperial College Preprint, Imperial /TP/85–86/16 (1986); M.Google Scholar
  32. 23.
    C.N. Pope, M.F. Sohnius, and K.S. Stelle, Imperial College Preprint, Imperial /TP/85–86/16 (1986);Google Scholar
  33. 24.
    E. Witten, unpublished; A. Sen and D. Nemeschansky, SLAC preprint (1986).Google Scholar
  34. 25.
    M. Dine, N. Seiberg, X.G. Wen, and E. Witten, “Non-perturbative Effects on the String World Sheet,” Princeton University preprint (1986).Google Scholar
  35. 26.
    E. Witten, Nucl. Phys. B258 (1985) 75.CrossRefGoogle Scholar
  36. 27.
    J.D. Breit, B.A. Ovrut, and G. Segre, Phys. Lett. 158B (1985) 33;Google Scholar
  37. J.D. Breit, B.A. Ovrut, and G. Segre, A. Sen, Phys. Rev. Lett. 55 (1985) 33.CrossRefGoogle Scholar
  38. 28.
    A. Strominger and E. Witten, Comm. Math. Phys. 101 (1985) 341;CrossRefGoogle Scholar
  39. A. Strominger, Santa Barbara preprint (1985), and in Unified String Theories, edited by M. Green and D. Gross (World Scientific, 1986 ).Google Scholar
  40. 29.
    E. Witten, “New Issues in Manifolds of SU(3) Holonomy,” Princeton preprint (1985).Google Scholar
  41. 30.
    E. Cremmer, S. Ferrara, L. Girardello, and A. Van Proeyen, Nucl. Phys. B212 (1983) 413.CrossRefGoogle Scholar
  42. 31.
    A. Strominger, Santa Barbara preprint (1986).Google Scholar
  43. 32.
    V. Kaplunovsky, Phys. Rev. Lett. 55 (1985) 1033.CrossRefGoogle Scholar
  44. 33.
    E. Martinec, Princeton University preprint (1986).Google Scholar
  45. 34.
    C.S.Hamidi and C. Vafa, “Interactions on Orbifolds,” Caltech preprint (1986).Google Scholar
  46. 34.
    L. Dixon, D. Friedan, E. Martinec, and S. Shenker “Conformal Field Theory of Orbifolds,” Chicago preprint (1986).Google Scholar
  47. 35.
    E. Witten, Nucl. Phys. B188 (1981) 513;CrossRefGoogle Scholar
  48. I. Affleck, M. Dine, and N. Seiberg, Nucl. Phys. B256 (1985) 557.CrossRefGoogle Scholar
  49. 36.
    H. Georgi,H. Quinn, and S. Weinberg, Phys. Rev. Lett. 33 (1974) 451.CrossRefGoogle Scholar
  50. 37.
    M. Dine, V. Kaplunovsky, C. Nappi, M. Mangano, and N. Seiberg, Nucl. Phys. B259 (1985) 549.CrossRefGoogle Scholar
  51. 38.
    B.R. Green, K.H. Kirklin, P.J. Miron, and G.B. Ross, “A Superstring Inspired Standard Model” and “A Three Generation Superstring Model”, Oxford preprints (1986).Google Scholar
  52. 39.
    F. del Aguila, G. Blair, M. Daniel, and G.G. Ross, CERN preprint (1985).Google Scholar
  53. 40.
    H. Georgi, Harvard University preprint (1986).Google Scholar
  54. 41.
    R. Rohm, Nucl. Phys. B237 (1984) 553.CrossRefGoogle Scholar
  55. 42.
    M. Dine, R. Rohm, N. Seiberg, and E. Witten, Phys. Lett. 156B (1985) 55;Google Scholar
  56. J.-P. Derendinger, L.E. Ibanez and H.P. Nilles, Phys. Lett. 155B (1985) 65.Google Scholar
  57. 43.
    A. Strominger, Santa-Barbara preprint (1985).Google Scholar
  58. 44.
    M. Dine and N. Seiberg, Nucl. Phys. B273 (1986) 109.CrossRefGoogle Scholar
  59. 45.
    N. Seiberg, to appear in the proceedings of the Third Jerusalem Winter School - Strings and Superstrings.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Michael Dine
    • 1
    • 2
  1. 1.Physics DepartmentCity College of the City University of New YorkNew YorkUSA
  2. 2.The Institute for Advanced StudyPrincetonUSA

Personalised recommendations