Advertisement

New Aspects of Comparative Peripheral Auditory Physiology

Chapter

Abstract

Although the study of the auditory system of nonmammals has a long history, it has only been in the last ten years that there has been a greatly increased interest in comparative studies. There are two main reasons for this upsurge in interest. Firstly, the hearing organs of amphibians, reptiles and birds display a structural variety not found in the cochlea of mammals, offering the chance to investigate structure- function relationships without interfering with the normal structure. Secondly, it has been recognized that the sensory papillae of many nonmammals are mechanically and physiologically relatively robust, which allows extensive and detailed investigation of hair-cell function in isolated organs.

Keywords

Hair Cell Basilar Membrane Tuning Curve Otoacoustic Emission Frequency Selectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crawford, A. C. and Fettiplace, R. 1980, The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle, J. Physiol., 306:79–125.PubMedGoogle Scholar
  2. Crawford, A. C. and Fettiplace, R., 1981, An electrical tuning mechanism in turtle cochlear hair cells, J. Physiol., 312:377–412.PubMedGoogle Scholar
  3. Eatock, R. A. and Manley, G. A., 1976, Temperature effects on single auditory nerve fiber responses, J. Acoust. Soc. Amer., 60:S80.CrossRefGoogle Scholar
  4. Eatock, R. A. and Manley, G. A., 1981, Auditory nerve fibre activity in the tokay gecko: II, temperature effect on timing, J. Comp. Physiol. A, 142:219–226.CrossRefGoogle Scholar
  5. Gleich, O. and Manley, G. A., 1988, Quantitative morphological analysis of the sensory epithelium of the starling and pigeon basilar papilla, (Submitted).Google Scholar
  6. Gross, N. B. and Anderson, D. J., 1976, Single unit responses recorded from the first order neuron of the pigeon auditory system, Brain Res., 101:209–222.PubMedCrossRefGoogle Scholar
  7. Gummer, A. W. and Klinke, R., 1983, Influence of temperature on tuning of primary-like units in the guinea pig cochlear nucleus, Hearing Res., 12:367–380.CrossRefGoogle Scholar
  8. Klinke, R. and Schermuly, L., 1986, Inner ear mechanics of the crocodilian and avian basilar papillae in comparison to neuronal data, Hearing Res., 22:183–184.CrossRefGoogle Scholar
  9. Klinke, R. and Smolders, J., 1984, Hearing mechanisms in caiman and pigeon, in: “Comparative Physiology of Sensory Systems”, L. Bolis, R. D. Keynes, S. H. P. Maddrell, eds., Cambridge Univ. Press, 195–211.Google Scholar
  10. Köppl, C. and Gleich, O., 1987, Cobalt labelling of single primary auditory neurones: an alternative to HRP, (Submitted).Google Scholar
  11. Leake, P. A., 1977, SEM observations of the cochlear duct in Caiman crocodilus, Scan. Electr. Micros., 2:437–444.Google Scholar
  12. Lieberman, M. C., 1982, The cochlear frequency map for the cat: Labeling auditory-nerve fibers of known characteristic frequency, J. Acoust. Soc. Amer., 72:1441–1449.CrossRefGoogle Scholar
  13. Manley, G. A., 1979, Preferred intervals in the spontaneous activity of primary auditory neurones, Naturwiss. 66:582.PubMedCrossRefGoogle Scholar
  14. Manley, G. A., 1981, A review of the auditory physiology of the reptiles, Progr. Sens. Physiol., 2:49–134.CrossRefGoogle Scholar
  15. Manley, G. A., 1986, The evolution of the mechanisms of frequency selectivity in vertebrates, in: “Auditory Frequency Selectivity”, B. C. J. Moore, R. D. Patterson, eds., Plenum Press, New York, London, 63–72.Google Scholar
  16. Manley, G. A. and Gleich, O., 1984, Avian primary auditory neurones: the relationship between characteristic frequency and preferred intervals, Naturwissenschaften, 71:592–594.PubMedCrossRefGoogle Scholar
  17. Manley, G. A., Gleich, O., Leppelsack, H.-J. and Oeckinghaus, H., 1985, Activity patterns of cochlear ganglion neurones in the starling, J. Comp. Physiol. A., 157:161–181.PubMedCrossRefGoogle Scholar
  18. Manley, G. A., Brix, J. and Kaiser, A., 1987a, Developmental stability of the tonotopic organization of the chick’s basilar papilla, Science, 237:655–656.PubMedCrossRefGoogle Scholar
  19. Manley, G. A., Schulze, M. and Oeckinghaus, H., 1987b, Otoacoustic emissions in a song bird, Hearing Res., 26:257–266.CrossRefGoogle Scholar
  20. Manley, G. A., Yates, G. and Köppl, C., 1987c, Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua, (Submitted)Google Scholar
  21. Miller, M. R. and Beck, J., 1988, Auditory hair cell innervational patterns in lizards, (Submitted).Google Scholar
  22. Moffat, A. J. M. and Capranica, R. R., 1976, Effects of temperature on the response properties of auditory nerve fibers in the american toad (Bufo americanus), J. Acoust. Soc. Amer., 60:S580.CrossRefGoogle Scholar
  23. Neely, S. T. and Kim, D. O., 1983, An active cochlear model showing sharp tuning and high sensitivity, Hearing Res., 9:123–130.CrossRefGoogle Scholar
  24. Palmer, A. and Wilson, J. P., 1981, Spontaneous evoked emissions in the frog Rana esculenta, J. Physiol., 324:66P.Google Scholar
  25. Sachs, M. B., Young, E. D. and Lewis, R. H., 1974, Discharge patterns of single fibers in the pigeon auditory nerve, Brain Res., 70:431–447.PubMedCrossRefGoogle Scholar
  26. Schermuly, L. and Klinke, R., 1985, Change of characteristic frequencies of pigeon primary auditory afferents with temperature, J. Comp. Physiol. A., 156:209–211.CrossRefGoogle Scholar
  27. Smolders, J. W. T. and Klinke, R., 1984, Effects of temperature on the properties of primary auditory fibres of the spectacled caiman, Caiman crocodilus (L), J. Comp. Physiol., 155:19–30.CrossRefGoogle Scholar
  28. Smith, C. A., 1985, Inner ear, in: “Form and Function in Birds”, A. S. King, J. McLeland, eds., Vol 3. Academic Press, London, 273–310.Google Scholar
  29. Strelioff, D. and Flock, A., 1984, Stiffness of sensory-cell hair bundles in the isolated guinea pig cochlea, Hearing Res., 15:19–28.CrossRefGoogle Scholar
  30. Takasaka, T. and Smith, C. A., 1971, The structure and innervation of the pigeon’s basilar papilla, J. Ultrastruct. Res., 35:20–65.PubMedCrossRefGoogle Scholar
  31. Temchin, A. N., 1985, Acoustical reception in birds, in: “Acta XVIII Congressus Internat Ornithol.”, V. D. Ilyichev, V. M. Gavrilov, eds., Vol. 1 Moskow Nauka, 275–282.Google Scholar
  32. Turner, R. G., 1987, Neural tuning in the granite spiny lizard, Hearing Res., 26:287–299.CrossRefGoogle Scholar
  33. Vater, M., Feng, A. S. and Betz, M., 1985, An HRP-study of the frequency- place map of the horseshoe-bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band, J. Comp. Physiol. A., 157:671–686.PubMedCrossRefGoogle Scholar
  34. Weiss, T. F., Mulroy, M. J., Turner, R. G. and Pike, C. L., 1976, Tuning of single fibres in the cochlear nerve of the alligator lizard: relation to receptor morphology, Brain Res. 115:71–90.PubMedCrossRefGoogle Scholar
  35. Zwislocki, J. J., 1979, Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea, Acta Otolaryngol., 87:267–269.PubMedCrossRefGoogle Scholar
  36. Zwislocki, J. J., 1985, Are nonlinearities observed in firing rates of auditory-nerve afferents reflections of a nonlinear coupling between the tectorial membrane and the Organ of Corti?, Hearing Res., 22:217–221.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  1. 1.Institute of ZoologyTechnical University MunichGarchingGermany
  2. 2.Department of PhysiologyUniversity of Western AustraliaNedlandsAustralia

Personalised recommendations