Advertisement

Neurotransmitter Microchemistry of the Cochlear Nucleus and Superior Olivary Complex

Chapter

Abstract

The complex function of the nervous system is made possible by its underlying chemistry. One aspect of this chemistry involves the primary mechanism by which neurons communicate with each other, chemical neurotransmission. It is likely that the neurons of the auditory system are organized chemically as well as structurally and functionally. We may therefore look for populations of neurons employing particular neurotransmitters. These neuronal populations may serve specific functions in the auditory system, just as specific functions are served by cholinergic spinal motoneurons or dopaminergic nigrostriatal neurons.

Keywords

Auditory Nerve Cochlear Nucleus ChAT Activity Dorsal Cochlear Nucleus Ventral Cochlear Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. C., 1982, Collaterals of labyrinthine efferent axons, Soc. Neurosci. Abstr., 8:149.Google Scholar
  2. Adams, J. C. and Mugnaini, E., 1984, GAD-like immunoreactivity in the ventral cochlear nucleus, Soc. Neurosci. Abstr., 10:393.Google Scholar
  3. Adams, J. C. and Wenthold, R. J., 1987, Immunostaining of GABA-ergic and glycinergic inputs to the anteroventral cochlear nucleus, Soc. Neurosci. Abstr., 13:1259.Google Scholar
  4. Altschuler, R. A., Betz, H., Parakkal, M. H., Reeks, K. A. and Wenthold, R. A., 1986, Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor, Brain Res., 369:316–320.PubMedCrossRefGoogle Scholar
  5. Baker, B. N., Glendenning, K. K. and Hodges, P., 1986, Acoustic chiasm: distribution of glycine and GABA receptors in the brainstem auditory nuclei of cat, Abstr. 9th Midwinter Res. Mtng., ARQ:7.Google Scholar
  6. Bledsoe, S. C. Jr., Altschuler, R. A., Wenthold, R. J. and Prasad, V., 1987, Immunocytochemical localization of glycine in the guinea pig superior olivary complex: lesion studies, Abstr. 10th Midwinter Res. Mtng., ARO:157.Google Scholar
  7. Brawer, J. R., Morest, D. K. and Kane, E. C., 1974, The neuronal architecture of the cochlear nucleus of the cat, J. Comp. Neurol., 155:251–300.PubMedCrossRefGoogle Scholar
  8. Cant, N. B., 1984, The fine structure of the lateral superior olivary nucleus of the cat, J. Comp. Neurol., 227:63–77.PubMedCrossRefGoogle Scholar
  9. Cant, N. B. and Gaston, K. C., 1982, Pathways connecting the right and left cochlear nuclei, J. Comp. Neurol., 212:313–326.PubMedCrossRefGoogle Scholar
  10. Caspary, D. M., Havey, D. C. and Faingold, C. L., 1979, Effects of micro- iontophoretically applied glycine and GABA on neuronal response patterns in the cochlear nuclei, Brain Res., 172:179–185.PubMedCrossRefGoogle Scholar
  11. Caspary, D. M., Rybak, L. P. and Faingold, C. L., 1985, The effects of inhibitory and excitatory amino-acid neurotransmitters on the response properties of brainstem auditory neurons, in: “Auditory Biochemistry”, Drescher, D. G., ed., Thomas, Springfield, 198–226.Google Scholar
  12. Cooper, J. R., Bloom, F. E. and Roth, R. H., 1986, “The Biochemical Basis of Neuropharmacology”, Oxford Univ., New York.Google Scholar
  13. Cowan, W. M., 1970, Anterograde and retrograde transneuronal degeneration in the central and peripheral nervous system, in: “Contemporary Research Methods in Neuroanatomy”, Nauta, W. J. H. and Ebbesson, S. O. E., eds., Springer-Verlag, New York, 217–251.Google Scholar
  14. Davies, W. E., 1977, GABAergic innervation of the mammalian cochlear nucleus, in: “Inner Ear Biology”, Portmann, M. and Aran, J.-M., eds., INSERM, Paris, 68:155–164.Google Scholar
  15. Fisher, S. K. and Davies, W. E., 1976, GABA and its related enzymes in the lower auditory system of the guinea pig, J. Neurochem., 27:1145–1155.PubMedCrossRefGoogle Scholar
  16. Frostholm, A. and Rotter, A., 1986, Autoradiographic localization of receptors in the cochlear nucleus of the mouse, Brain Res. Bull., 16:189–203.PubMedCrossRefGoogle Scholar
  17. Godfrey, D. A. and Matschinsky, F. M., 1976, Approach to three-dimensional mapping of quantitative histochemical measurements applied to studies of the cochlear nucleus, J. Histochem. Cytochem., 24:697–712.PubMedCrossRefGoogle Scholar
  18. Godfrey, D. A., Carter, J. A., Berger, S. J., Lowry, O. H. and Matschinsky, F. M., 1977a, Quantitative histochemical mapping of candidate transmitter amino acids in the cat cochlear nucleus, J. Histochem. Cytochem., 25:417–431.PubMedCrossRefGoogle Scholar
  19. Godfrey, D. A., Williams, A. D. and Matschinsky, F. M., 1977b, Quantitative histochemical mapping of enzymes of the cholinergic system in cat cochlear nucleus, J. Histochem. Cytochem., 25:397–416.PubMedCrossRefGoogle Scholar
  20. Godfrey, D. A., Carter, J. A., Lowry, O. H. and Matschinsky, F. M., 1978, Distribution of gamma-aminobutyric acid, glycine, glutamate and aspartate in the cochlear nucleus of the rat, J. Histochem. Cytochem., 26:118–126.PubMedCrossRefGoogle Scholar
  21. Godfrey, D. A., Park, J. L., Rabe, J. R., Dunn, J. D. and Ross, C. D., 1983, Effects of large brain stem lesions on the cholinergic system in the rat cochlear nucleus, Hearing Res., 11:133–156.CrossRefGoogle Scholar
  22. Godfrey, D. A., Beranek, K. L., Carlson, L., Dunn, J. D. and Ross, C. D., 1985a, Centrifugal cholinergic projections to subregions of cat cochlear nucleus, Soc. Neurosci. Abstr., 11:1052.Google Scholar
  23. Godfrey, D. A., Park, J. L., Dunn, J. D. and Ross, C. D., 1985b, Cholinergic neurotransmission in the cochlear nucleus, in: “Auditory Biochemistry”, Drescher, D. G., ed., Thomas, Springfield, 163–183.Google Scholar
  24. Godfrey, D. A., Park-Hellendall, J. L., Dunn, J. D. and Ross, C. D., 1987a, Effect of olivocochlear bundle transection on choline acetyl- transferase activity in the rat cochlear nucleus, Hearing Res., 28:237–251.CrossRefGoogle Scholar
  25. Godfrey, D. A., Park-Hellendall, J. L., Dunn, J. D. and Ross, C. D., 1987b, Effects of trapezoid body and superior olive lesions on choline acetyltransferase activity in the rat cochlear nucleus, Hearing Res., 28:253–270.CrossRefGoogle Scholar
  26. Hill, D. W., Walters, F. H., Wilson, T. D. and Stuart, J. D., 1979, High performance liquid chromatographic determination of amino acids in the picomole range, Analyt. Chem., 51:1338–1341.CrossRefGoogle Scholar
  27. Kromer, L. F. and Moore, R. Y., 1980, Norepinephrine innervation of the cochlear nuclei by locus coeruleus neurons in the rat, Anat. Embryol., 158:227–244.PubMedCrossRefGoogle Scholar
  28. Liberman, M. C. and Brown, M. C., 1986, Physiology and anatomy of single olivocochlear neurons in the cat, Hearing Res., 24:17–36.CrossRefGoogle Scholar
  29. Lorente de Nó, R., 1981, “The Primary Acoustic Nuclei”, Raven, New York.Google Scholar
  30. Lowry, O. H. and Passonneau, J. V., 1972, “A Flexible System of Enzymatic Analysis”, Academic, New York.Google Scholar
  31. Martin, M. R., 1985, The pharmacology of amino acid receptors and synaptic transmission in the cochlear nucleus, in: “Auditory Biochemistry”, Drescher, D. G., ed., Thomas, Springfield, 184–197.Google Scholar
  32. Moore, J. K. and Moore, R. Y., 1984, GAD-like immunoreactivity in the cochlear nuclei and superior olivary complex, Soc. Neurosci. Abstr., 10:843.Google Scholar
  33. Moore, M. J. and Caspary, D. M., 1983, Strychnine blocks binaural inhibition in lateral superior olivary neurons, J. Neurosci., 3:237–242.PubMedGoogle Scholar
  34. Mugnaini, E., 1985, GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: light and electron microscopic immunocyto- chemistry, J. Comp. Neurol., 235:61–81.PubMedCrossRefGoogle Scholar
  35. Oertel, D., 1984, Cells in the anteroventral cochlear nucleus are insensitive to L-glutamate and L-aspartate; excitatory synaptic responses are not blocked by D-alpha-aminoadipate, Brain Res., 302:213–220.PubMedCrossRefGoogle Scholar
  36. Orkand, R. K., 1977, Glial cells, in: “Handbook of Physiology. Section 1. The Nervous System”, Brookhart, J. M. and Mountcastle, V. B., eds., Am. Physiol. Soc., Bethesda, 855–875.Google Scholar
  37. Ostapoff, E. M., Morest, D. K. and Potashner, S. J., 1985, Retrograde transport of 3H-GABA from the cochlear nucleus to the superior olive in guinea pig, Soc. Neurosci. Abstr., 11:1051.Google Scholar
  38. Parli, J. A., Schemenaur, J. E., Godfrey, D. A. and Ross, C. D., 1987, Amino acid concentrations in rat auditory, olfactory and visual structures, Soc. Neurosci. Abstr., 13:1288.Google Scholar
  39. Patel, A. J. and Hunt, A., 1985, Concentration of free amino acids in primary cultures of neurons and astrocytes, J. Neurochem., 44:1816–1821.PubMedCrossRefGoogle Scholar
  40. Peyret, D., Geffard, M. and Aran, J.-M., 1986, GABA immunoreactivity iń the primary nuclei of the auditory central nervous system, Hearing Res., 23:115–121.CrossRefGoogle Scholar
  41. Potashner, S. J., Lindberg, N. and Morest, D. K., 1985a, Uptake and release of gamma-aminobutyric acid in the guinea pig cochlear nucleus after axotomy of cochlear and centrifugal fibers, J. Neurochem., 45:1558–1566.PubMedCrossRefGoogle Scholar
  42. Potashner, S. J., Morest, D. K., Oliver, D. L. and Jones, D. R., 1985b, Identification of glutamatergic and aspartatergic pathways in the auditory system, in:“Auditory Biochemistry”, Drescher, D. G., ed., Thomas, Springfield, 141–162.Google Scholar
  43. Roberts, R. C. and Ribak, C. E., 1987, GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil, J. Comp. Neurol., 258:267–280.PubMedCrossRefGoogle Scholar
  44. Saint Marie, L., Ostapoff, E. M. and Morest, D. K., 1986, Co-localization of H GABA and GABA-like immunoreactivity in superior olivary neurons retrogradely labeled from guinea pig cochlear nucleus, Soc. Neurosci. Abstr., 12:1269.Google Scholar
  45. Sanes, D. H., Geary, W. A. II. and Wooten, G. F., 1985, The quantitative distribution of 3H-strychnine binding in the lateral superior olivary nucleus of the gerbil, Soc. Neurosci. Abstr., 11:1051.Google Scholar
  46. Schwartz, I. R., 1985, Autoradiographic studies of amino acid labeling of neural elements in the auditory brainstem, in: “Auditory Biochemistry”, Drescher, D. G., ed., Thomas, Springfield, 258–277.Google Scholar
  47. Schwartz, I. R. and Yu, S.-M., 1986, An anti-GABA antibody labels subpopulations of axonal terminals and neurons in the gerbil dorsal cochlear nucleus and superior olivary complex, Soc. Neurosci. Abstr., 12:128–137.Google Scholar
  48. Staatz-Benson, C. and Potashner, S. J., 1987, Uptake and release of glycine in the guinea pig cochlear nucleus, J. Neurochem., 49:128–137.PubMedCrossRefGoogle Scholar
  49. Tachibana, M. and Kuriyama, K., 1974, Gamma-aminobutyric acid in the lower auditory pathway of the guinea pig, Brain Res., 69:370–374.PubMedCrossRefGoogle Scholar
  50. Thompson, G. C., Cortez, A. M. and Lam, D. M. K., 1985, Localization of GABA immunoreactivity in the auditory brainstem of guinea pigs., Brain Res., 339:119–122.PubMedCrossRefGoogle Scholar
  51. Warr, W. B., 1975, Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry, J. Comp. Neurol., 161:159–182.PubMedCrossRefGoogle Scholar
  52. Warr, W. B., 1982, Parallel ascending pathways from the cochlear nucleus: neuroanatomical evidence of functional specialization, Contrib. Sens. Physiol., 7:1–38.Google Scholar
  53. Wenthold, R. J., 1978, Glutamic acid and aspartic acid in subdivisions of the cochlear nucleus after auditory nerve lesion, Brain Res., 143: 544–548.PubMedCrossRefGoogle Scholar
  54. Wenthold, R. J., 1985, Glutamate and aspartate as neurotransmitters of the auditory nerve, in: “Auditory Biochemistry”, Drescher, D. G., ed., Thomas, Springfield, 125–140.Google Scholar
  55. Wenthold, R. J., 1987, Evidence for a glycinergic pathway connecting the two cochlear nuclei:an immunocytochemical and retrograde transport study, Brain Res., 415:183–187.PubMedCrossRefGoogle Scholar
  56. Wenthold, R. J. and Gulley, R. L., 1977, Aspartic acid and glutamic acid levels in the cochlear nucleus after auditory nerve lesion, Brain Res., 138:111–123.PubMedCrossRefGoogle Scholar
  57. Wenthold, R. J. and Morest, D. K., 1976, Transmitter related enzymes in the guinea pig cochlear nucleus, Soc. Neurosci. Abstr., 2:28.Google Scholar
  58. Wenthold, R. J., Altschuler, R. A., Huie, D., Parakkal, M. H. and Reeks, K. A., 1986a, Immunocytochemical localization of glycine in the cochlear nucleus and superior olivary complex of the guinea pig, Soc. Neurosci. Abstr., 12:1265.Google Scholar
  59. Wenthold, R. J., Zemple, J. M., Parakkal, M. H., Reeks, K. A. and Altschuler, R. A., 1986b, Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig, Brain Res., 380:7–18.PubMedCrossRefGoogle Scholar
  60. Werman, R., 1966, Criteria for identification of a central nervous system transmitter, Comp. Biochem. Physiol., 18:745–766.PubMedCrossRefGoogle Scholar
  61. White, J. S. and Warr, W. B., 1983, The dual origins of olivocochlear neurons in the albino rat, J. Comp. Neurol., 219:203–214.PubMedCrossRefGoogle Scholar
  62. Wu, S. H. and Oertel, D., 1986, Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine, J. Neurosci., 6:2691–2706.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  1. 1.Department of PhysiologyOral Roberts UniversityTulsaUSA
  2. 2.Department of AnatomyOral Roberts UniversityTulsaUSA

Personalised recommendations