Genetic Variants Affecting the Structure and Function of the Human Red Cell Membrane

  • John C. Parker
  • Lee R. Berkowitz


Investigators interested in the plasma membrane have long appreciated the red cell as an object of study. Red cells can be obtained in abundance and easily freed of contamination by other cell types. Mammalian red cells have no membranes other than the plasmalemma, which is easily isolated and purified. The “extracellular space” problem that plagues studies of cell solute and water content is virtually nonexistent. The techniques of making “resealed ghosts” and “inside-out vesicles” have provided ingenious approaches to problems that involve asymmetrical membrane properties. Our understanding of the ultrastructure and organization of lipids and proteins in biological membranes derives largely from the study of human erythrocytes. Much of what we know about the state of water and solutes in cytoplasm, the Na+,K+ pump, the Ca2+ pump, and some coupled, passive transport systems is based on work in red cell preparations.


Muscular Dystrophy Sickle Cell Erythrocyte Membrane Duchenne Muscular Dystrophy Myotonic Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acquaye, C. T. A., M. Wilchek, and M. Gorecki. 1982. The effect of antisickling agents on the fluidity of erythrocyte membranes. Biochem. Int. 4: 221–227.Google Scholar
  2. 2.
    Adornato, B. T., L. Corash, and W. K. Engel. 1977. Erythrocyte survival in Duchenne muscular dystrophy. Neurology 27: 1093–1094.PubMedGoogle Scholar
  3. 3.
    Adragna, N., and D. C. Tosteson. 1984. Effect of volume change on ouabain-insensitive net onward cation movements in human red cells. J. Membr. Biol. 78: 43–52.Google Scholar
  4. 4.
    Adragna, N., M. L. Canessa, H. Solomon, E. Slater, and D. C. Tosteson. 1982. Red cell lithium-sodium countertransport and sodium-potassium cotransport in patients with essential hypertension. Hypertension 4: 795–804.PubMedGoogle Scholar
  5. 5.
    Adragna, N., C. Ellison, H. Solomon, S. Mathysse, D. C. Tosteson, and M. Canessa. 1982. Intrafamilial correlation coefficients for Na countertransport and cotransport in essential hypertension. Clin. Res. 30: 333A.Google Scholar
  6. 6.
    Agre, P., E. P. Orringer, and V. Bennett. 1982. Deficient red cell spectrin in severe, recessively inherited spherocytosis. N. Engl. J. Med. 306: 1155–1161.PubMedCrossRefGoogle Scholar
  7. 7.
    Agre, P., E. P. Orringer, D. H. K. Chui, and V. Bennett. 1981. A molecular defect in two families with hemolytic poikilocytic anemia: Reduction of high affinity membrane binding sites for ankyrin. J. Clin. Invest. 68: 1566–1576.PubMedCrossRefGoogle Scholar
  8. 8.
    Akari, S., and S. Matwari. 1971. Ouabain and erythrocyte ghost adenosine triphosphatase: Effects in human muscular dystrophies. Arch. Neurol. 24: 187–190.CrossRefGoogle Scholar
  9. 9.
    Albala, M. M., N. L. Fortier, and B. E. Glader. 1978. Physiologic features of hemolysis associated with altered cation transport and 2,3-diphosphoglycerate content. Blood 52: 135–141.PubMedGoogle Scholar
  10. 10.
    Albrecht, V. J., and B. Müller-Oerlinghausen. 1976. Zur klinische Bedeutung der intraerythrozyteeren lithium Konzentration: ergebnisse einer katamnestiche Studie. Arzneim. Forsch. 26: 1145–1147.Google Scholar
  11. 11.
    Ali, S. A., E. C. Gordon-Smith, and H. S. Selhi. 1979. Kinetics of red cell membrane phosphorylation: Altered affinity of HS membrane protein acceptors. Br. J. Haematol. 42: 225–230.PubMedCrossRefGoogle Scholar
  12. 12.
    Allan, D., M. M. Billah, J. B. Finean, and R. H. Mitchell. 1976. Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular [Ca2+] Nature (London) 261: 58–60.Google Scholar
  13. 13.
    Allan, D., A. R. Limbrick, P. Thomas, and M. P. Westerman. 1981. Microvesicles from sickle erythrocytes and their relation to irreversible sickling. Br. J. Haematol. 47: 383–390.PubMedCrossRefGoogle Scholar
  14. 14.
    Allan, D., A. R. Limbrick, P. Thomas, and M. P. Westerman. 1982. Release of spectrin-free vesicles on reoxygenation of sick-led erythrocytes. Nature (London) 295: 612–613.CrossRefGoogle Scholar
  15. 15.
    Allan, D., and R. H. Mitchell. 1976. Production of 1,2-diacylglycerol in human erythrocyte membranes exposed to low concentrations of calcium ions. Biochim. Biophys. Acta 455: 824–830.PubMedCrossRefGoogle Scholar
  16. 16.
    Allen, D. W., and S. Cadman. 1979. Calcium-induced erythrocyte membrane changes: The role of adsorption of cytosol proteins and proteases. Biochim. Biophys. Acta 551: 1–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Allen, F. H., S. M. R. Krabbe, and P. A. Corcoran. 1961. A new phenotype (McLeod) in the Kell blood group system. Vox Sang. 6: 555–560.PubMedCrossRefGoogle Scholar
  18. 18.
    Aloni, B., M. Sninitzky, S. Moses, and A. Livne. 1975. Elevated microviscosity in membrane of erythrocytes affected by hereditary spherocytosis. Br. J. Haematol. 31: 117–123.PubMedCrossRefGoogle Scholar
  19. 19.
    Ambrosini, E., F. V. Costa, L. Montebugnoli, C. Borghi, and B. Magnani. 1981. Intralymphocytic sodium concentration as an index of response to stress and exercise in young subjects with borderline hypertension. Clin. Sci. 61: 25s - 27s.Google Scholar
  20. 20.
    Ambrosini, E., F. Tartagni, L. Montebugnoli, and B. Magnani. 1979. Intralymphocytic sodium in hypertensive patients: A significant correlation. Clin. Sci. 57: 325s - 327s.Google Scholar
  21. 21.
    Anand, R., and A. E. H. Emery. 1981. Erythrocyte spectrin in Duchenne muscular dystrophy. Clin. Chim. Acta 117: 345–354.PubMedCrossRefGoogle Scholar
  22. 22.
    Anstee, D. J. 1981. The blood group MNSs-active sialoglycoproteins. Semin. Hematol. 28: 13–21.Google Scholar
  23. 23.
    Anstee, D. J., W. J. Mawby, and M. J. A. Tanner. 1979. Abnormal blood group Ss active sialoglycoprotein in the membranes of Miltenberger class III, IV, and V human erythrocytes. Biochem. J. 183: 193–203.PubMedGoogle Scholar
  24. 24.
    Appel, S., and A. D. Roses. 1976. Membrane biochemical studies in myotonic muscular dystrophy. In: Membranes and Disease. L. Bolis, J. F. Hoffman, and A. Leaf, eds. Raven Press, New York. pp. 189–195.Google Scholar
  25. 25.
    Araoye, M. A., I. M. Khatri, L. L. Y. Yao, and E. D. Fries. 1978. Intracellular sodium in hypertensive patients. Clin. Res. 26: 53A.Google Scholar
  26. 26.
    Asakura, T., K. Minakata, K. Adachi, M. O. Russell, and E. Schwartz. 1977. Denatured hemoglobin in sickle erythrocytes. J. Clin. Invest. 59: 633–640.PubMedCrossRefGoogle Scholar
  27. 27.
    Asakura, T., S. T. Ohnishi, K. Adachi, M. Ozguc, K. Hashimoto, M. Singer, M. O. Russell, and E. Schwartz. 1980. Effect of cetiedil on erythrocyte sickling: New type of antisickling agent that may affect erythrocyte membranes. Proc. Natl. Acad Sci. USA 77: 2955–2959.PubMedCrossRefGoogle Scholar
  28. 28.
    Ashley, D. L., and J. H. Goldstein. 1981. Nuclear magnetic resonance evidence for abnormal water transport in Duchenne muscular dystrophy erythrocytes. Biochem. Biophys. Res. Commun. 100: 364–369.PubMedCrossRefGoogle Scholar
  29. 29.
    Bachi, T., K. Whiting, M. J. A. Tanner, M. N. Metaxas, and D. J. Anstee. 1977. Freeze-fracture electron microscopy of human erythrocytes lacking the major membrane sialoglycoprotein. Biochim. Biophys. Acta 464: 635–639.PubMedCrossRefGoogle Scholar
  30. 30.
    Balfe, J. W., C. Cole, E. K. M. Smith, J. B. Graham, and L. G. Welt. 1968. A hereditary transport defect in the human red blood cell. J. Clin. Invest. 47: 4a.Google Scholar
  31. 31.
    Banga, J. P., J. C. Pinder, W. B. Gratzer, D. C. Linch, and E. R. Huens. 1979. An erythrocyte membrane protein abnormality in march hemoglobinuria. Lancet 2: 1048–1049.PubMedCrossRefGoogle Scholar
  32. 32.
    Barchi, R. L. 1980. Physical probes of biological membranes in studies of the muscular dystrophies. Muscle Nerve 3: 82–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Ben-Ishay, D., A. Avriham, and R. Viskoper. 1975. Increased erythrocytes sodium efflux in genetic hypertensive rats of the Hebrew University strain. Experientia 31: 660–662.PubMedCrossRefGoogle Scholar
  34. 34.
    Benjamin, L. J., G. Kokkini, and C. M. Peterson. 1980. Cetiedil: Its potential usefulness in sickle cell disease. Blood 55: 265–270.PubMedGoogle Scholar
  35. 35.
    Bennett, V., and P. J. Stenbock. 1980. Association between ankyrin and the cytoplasmic domain of band 3 isolated from human erythrocyte membranes. J. Biol. Chem. 255: 6424–6432.PubMedGoogle Scholar
  36. 36.
    Berglund, G., L. Sigstrom, S. Landin, B. E. Karlberg, and H. Herlitz. 1981. Intra-erythrocytic sodium and Na,K-ATPase concentration and urinary aldosterone excretion in spontaneously hypertensive rats. Clin. Sci. 60: 229–232.PubMedGoogle Scholar
  37. 37.
    Berkowitz, L. R., and E. P. Orringer. 1981. The effect of cetiedil, an in vitro antisickling agent, on erythrocyte membrane cation permeability. J. Clin. Invest. 68: 1215–1220.PubMedCrossRefGoogle Scholar
  38. 38.
    Berkowitz, L. R., and E. P. Orringer. 1982. Effects of cetiedil on monovalent cation permeability in the erythrocyte: An explanation for the efficacy of cetiedil in the treatment of sickle cell anemia. Blood Cells 8: 283–288.PubMedGoogle Scholar
  39. 39.
    Bertelsen, A., B. Havald, and M. Hauge. 1977. A Danish twin study of manic-depressive disorders. Br. J. Psychol. 130: 330–351.CrossRefGoogle Scholar
  40. 40.
    Bertles, J. F. 1957. Sodium transport across the surface membrane of red blood cells in hereditary spherocytosis. J. Clin. Invest. 36: 816–824.PubMedCrossRefGoogle Scholar
  41. 41.
    Bertles, J. F., and P. F. A. Milner. 1968. Irreversibly sickled erythrocytes: A consequence of the heterogeneous distribution of hemoglobin types in sickle cell anemia. J. Clin. Invest. 47: 1731–1741.PubMedCrossRefGoogle Scholar
  42. 42.
    Beutler, E., E. Ginto, and C. Johnson. 1976. Human red cell protein kinase in normal subjects and patients with hereditary spherocytosis, sickle cell disease, and autoimmune hemolytic anemia. Blood 48: 887–898.PubMedGoogle Scholar
  43. 43.
    Bialas, W. A., W. R. Markesberry, and D. A. Butterfield. 1980. Increased chloride transport in erythrocytes in Huntington’s disease. Biochem. Biophys. Res. Commun. 95: 1895–1900.PubMedCrossRefGoogle Scholar
  44. 44.
    Bienzle, U., S. Bhadki, H. Knufferman, D. Niethammer, and E. Kleihauer. 1977. Abnormality of erythrocyte membrane protein in a case of congenital stomatocytosis. Klin. Wochenschr. 55: 569–572.PubMedCrossRefGoogle Scholar
  45. 45.
    Bienzle, U., D. Niethammer, U. Keeberg, K. Ungefahr, K. Kohne, and E. Kleihauer. 1975. Congenital stomatocytosis and chronic hemolytic anemia. Scand. J. Haematol. 15: 339–346.PubMedCrossRefGoogle Scholar
  46. 46.
    Blaustein, M. P. 1977. Sodium ions, calcium ions, blood pressure regulation, and hypertension: A reassessment and a hypothesis. Am. J. Physiol. 232: C165 - C173.PubMedGoogle Scholar
  47. 47.
    Boellinger, J. W., E. J. Olson, D. Frederickson, and E. R. Hughes. 1965. Plasma and erythrocyte magnesium in muscular dystrophy. Am. J. Dis. Child. 110: 172–175.Google Scholar
  48. 48.
    Bogin, E., S. G. Massry, J. Levi, M. Djaldeti, G. Bristol, and J. Smith. 1982. Effect of parathyroid hormone on osmotic fragility of human erythrocytes. J. Clin. Invest. 69: 1017–1025.PubMedCrossRefGoogle Scholar
  49. 49.
    Boivin, P., J. Delaunay, and C. Galand. 1979. Altered erythrocyte membrane protein phosphorylation in an unusual case of hereditary spherocytosis. Scand. J. Haematol. 23: 251–255.PubMedCrossRefGoogle Scholar
  50. 50.
    Boivin, P., and C. Galand. 1977. Erythrocyte membrane phosphorylation in hereditary spherocytosis. Biomedicine 27: 34–36.PubMedGoogle Scholar
  51. 51.
    Bookchin, R. M., and V. L. Lew. 1980. Progressive inhibition of the Ca pump and Ca:Ca exchange in sickle red cells. Nature (London) 284: 561–563.CrossRefGoogle Scholar
  52. 52.
    Bookchin, R. M., and V. L. Lew. 1981. Effect of a “sickling pulse” on calcium and potassium transport in sickle cell trait red cells. J. Physiol. (London) 312: 265–280.Google Scholar
  53. 53.
    Bootsma, D., and P. J. MacAlpine. 1979. Report of the committee on the genetic constitution of chromosomes 2, 3, 4, and 5. Cytogenet. Cell Genet. 25: 21–31.Google Scholar
  54. 54.
    Bosia, A., G. P. Pescormina, and P. Arose. 1971. Red cell glycolysis in the myodystrophic child. Eur. J. Clin. Invest. 1: 413–420.PubMedCrossRefGoogle Scholar
  55. 55.
    Bosmann, H. B., D. M. Gersten, R. C. Griggs, J. L. Howland, M. S. Hudecki, S Katzare, and J. McLaughlin. 1976. Erythrocyte surface membrane alterations: Findings in human and animal muscular dystrophies. Arch. Neurol. 33: 135–138.PubMedCrossRefGoogle Scholar
  56. 56.
    Bracharz, H., H. Laas, and G. Betzein. 1962. Uber die Wirkung von aldosteronantagonisten auf der erhohten Blutdruck. Med. Klin. 57: 233–238.PubMedGoogle Scholar
  57. 57.
    Brain, M. C., I. Kohn, A. J. McKomas, Y. F. Missirlis, M. P. Rathbone, and J. Vickers. 1978. Red cell instability in Duchenne’s syndrome. N. Engl. J. Med. 298: 403.PubMedGoogle Scholar
  58. 58.
    Branton, D., C. M. Cohen, and J. Tyler. 1981. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell 24: 24–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Brazy, P. C., and R. B. Gunn. 1976. Furosemide inhibition of chloride transport in human red blood cells. J. Gen. Physiol. 68: 583–599.PubMedCrossRefGoogle Scholar
  60. 60.
    Brenner, S. L., and E. D. Korn. 1980. Spectrin/actin complex isolated from sheep erythrocytes accelerates actin polymerization by simple nucleation. J. Biol. Chem. 255: 1670–1676.PubMedGoogle Scholar
  61. 61.
    Brown, H. D., S. K. Chattopadhyay, and A. B. Patel. 1967. Erythrocyte abnormality in human myopathy. Science 157: 1577–1578.PubMedCrossRefGoogle Scholar
  62. 62.
    Brown, H. D., S. K. Chattopadhyay, and A. B. Patel. 1968. Diazacholesterol effect on membrane ATPase. Metabolism 17: 555–559.PubMedCrossRefGoogle Scholar
  63. 63.
    Burck, H. C. 1911. Der Elektrolytgehalt der Erythrozyten in rahmen der diagnostik der Herzinsuffizienz. Verh. Dtsch. Ges. Inn. Med. 77: 140–142.Google Scholar
  64. 64.
    Butterfield, D. A., M. L. Braden, and W. R. Markesbery. 1978. Erythrocyte membrane alterations in Huntington disease: Effects of gamma-amino butyric acid. J. Supramol. Struct. 9: 125–130.PubMedCrossRefGoogle Scholar
  65. 65.
    Butterfield, D. A., D. B. Chestnut, S. H. Appel, and A. D. Roses. 1976. Spin label study of erythrocyte membrane fluidity in myotonic and Duchenne muscular dystrophy and congenital myotonia. Nature (London) 263: 159–161.CrossRefGoogle Scholar
  66. 66.
    Butterfield, D. A., and W. R. Markesbery. 1980. Specificity of biophysical and biochemical alterations in erythrocyte membranes in neurological disorders. J. Neurol. Sci. 47: 261–271.PubMedCrossRefGoogle Scholar
  67. 67.
    Butterfield, D. A., J. Q. Oeswein, M. E. Prenz, K. C. Hisle, and W. R. Markesbery. 1978. Increased Na,K-ATPase activity in erythrocyte membranes in Huntington’s disease. Ann. Neurol. 4: 60–62.PubMedCrossRefGoogle Scholar
  68. 68.
    Butterfield, D. A., M. J. Purdy, and W. R. Markesbery. 1979. Electron spin resonance, hematological, and deformability studies of erythrocytes from patients with Huntington’s disease. Biochim. Biophys. Acta 551: 452–458.PubMedGoogle Scholar
  69. 69.
    Cade, J. F. 1949. Lithium salts in the treatment of psychotic excitement. Med. J. Aust. 2: 349–352.PubMedGoogle Scholar
  70. 70.
    Canali, M., E. Borghi, E. A Mnnfranari, A. Novarini, and A. Borghetti. 1981. Increased lithium-sodium countertransport in essential hypertension: Its relationship to family history of hypertension. Clin. Sci. 61: 13s - 15s.PubMedGoogle Scholar
  71. 71.
    Canessa, M., N. Adragna, I. Bize, T. Connolly, H. Solomon, G. Williams, E. Slater, and D. C. Tosteson. 1980. Ouabain-insensitive cation transport in red cells of normotensive and hypertensive patients. In: Intracellular Electrolytes and Arterial Hypertension. H. Zumkley and H. Losse, eds. Thieme, Stuttgart. pp. 239–250.Google Scholar
  72. 72.
    Canessa, M., A. Spalvins, N. Adragna, and B. Falkner. 1984. Red cell sodium countertransport and cotransport in normotensive and hypertensive blacks. Hypertension 6: 344–351.PubMedGoogle Scholar
  73. 73.
    Canessa, M., N. Adragna, H. S. Solomon, T. M. Connolly, and D. C. Tosteson. 1980. Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N. Engl. J. Med. 302: 772–776.PubMedCrossRefGoogle Scholar
  74. 74.
    Canessa, M., N. Adragna, H. Solomon, D. C. Tosteson, B. Falkner, and C. Ellison. 1982. Red cell Na transport polymorphism and essential hypertension. Clin. Res. 30: 334A.Google Scholar
  75. 75.
    Canessa, M., I. Bize, H. Solomon, N. Adragna, D. C. Tosteson, G. Dagher, R. Garay, and P. Meyer. 1981. Na countertransport and cotransport in human red cells: Function, dysfunction, and genes in essential hypertension. Clin. Exp. Hypertens. 3: 783–796.PubMedCrossRefGoogle Scholar
  76. 76.
    Casper, R. C., G. Pandey, L. Golenfeld, and J. M. Davis. 1976. Intracellular lithium and chemical response. Lancet 2: 418–419.PubMedCrossRefGoogle Scholar
  77. 77.
    Cazzulo, C. L., E. Smeraldi, E. Sacchetti, and S. Bottinelli. 1975. Intracellular lithium concentration and clinical response. Br. J. Psychiatry 126: 298–300.CrossRefGoogle Scholar
  78. 78.
    Chailley, B., C. Feo, R. Garay, G. Dagher, R. Bruckdorfer, S. Fischer, J. P. Piau, and J. Delaunay. 1981. Evidence for im-balanced furosemide-sensitive Na + K cotransport in hereditary stomatocytosis. Scand. J. Haematol. 27: 365–373.PubMedCrossRefGoogle Scholar
  79. 79.
    Chalikian, D. M., and R. L. Barchi. 1980. Fluorescent probe analysis of erythrocyte membranes in myotonic dystrophy. Neurology 30: 277–285.PubMedGoogle Scholar
  80. 80.
    Chapnam, R. G. 1968. Red cell life span after splenectomy in hereditary spherocytosis. J. Clin. Invest. 47: 2263–2267.CrossRefGoogle Scholar
  81. 81.
    Chien, S., S. Usami, and J. F. Bertles. 1970. Abnormal rheology of oxygenated blood in sickle cell anemia. J. Clin. Invest. 49: 623–634.PubMedCrossRefGoogle Scholar
  82. 82.
    Chipperfield, A. R. 1978. Stimulation of active transport in human erythrocytes by human plasma. J. Physiol. (London) 276: 29P - 30 P.Google Scholar
  83. 83.
    Chipperfield, A. R. 1981. Chloride dependence of furosemideand phloretin-sensitive passive sodium and potassium fluxes in human red cells. J. Physiol. (London) 312: 435–444.Google Scholar
  84. 84.
    Chiu, D., B. Lubin, B. Roelofsen, and L. L. M. van Deenen. 1981. Sickled erythrocytes accelerate clotting in vitro: An effect of abnormal membrane lipid asymmetry. Blood 58: 398–401.PubMedGoogle Scholar
  85. 85.
    Clark, M. R., J. C. Guattelli, N. Mohandas, and S. B. Shohet. 1980. Influence of red cell water content on the morphology of sickling. Blood 55: 823–830.PubMedGoogle Scholar
  86. 86.
    Clark, M. R., N. Mohandas, V. Caggiano, and S. B. Shohet. 1978. Effect of abnormal cation transport on deformability of dessicocytes. J. Supramol. Struct. 8: 521–532.PubMedCrossRefGoogle Scholar
  87. 87.
    Clark, M. R., and S. B. Shohet. 1976. Hybrid erythrocytes for membrane studies in sickle cell disease. Blood 47: 121–131.PubMedGoogle Scholar
  88. 88.
    Clark, M. R., R. C. Unger, and S. B. Shohet. 1978. Monovalent cation composition and ATP and lipid content of irreversibly sick-led cells. Blood 51: 1169–1178.PubMedGoogle Scholar
  89. 89.
    Coetzer, T., and S. S. Zail. 1981. Tryptic digestion of spectrin in variants of hereditary elliptocytosis. J. Clin. Invest. 67: 1241–1248.PubMedCrossRefGoogle Scholar
  90. 90.
    Cohen, C. M., and D. Branton. 1981. The normal and abnormal red cell cytoskeleton: A renewal search for molecular defects. Trends Biochem. Sci. 6: 266–268.Google Scholar
  91. 91.
    Cohen, N. S., J. E. Eckholm, M. G. Luthra, and D. J. Hanahan. 1976. Biochemical characterization of density-separated human erythrocytes. Biochim. Biophys. Acta 419: 229–242.PubMedCrossRefGoogle Scholar
  92. 92.
    Coletta, M., J. Hotnctner, H. vellum, aigu Kinetics of sickle cell hemoglobin polymerization in single red cells. Nature (London) 300: 194–197.Google Scholar
  93. 93.
    Cook, P. J. L., J. E. Noades, M. S. Newton, and R. De Mey. 1977. On the orientation of the Rh: Ell linkage group. Ann. Hum. Genet. 41: 157–162.PubMedCrossRefGoogle Scholar
  94. 94.
    Cooper, R. A., and J. H. Jandl. 1969. The selective and conjoint loss of red cell lipids. J. Clin. Invest. 48: 906–914.PubMedCrossRefGoogle Scholar
  95. 95.
    Cooper, R. A., W. H. Sawyer, M. H. Leslie, J. S. Hill, F. M. Gill, and J. S. Wiley. 1980. Normal fluidity of red cell membranes in hereditary spherocytosis. Br. J. Haematol. 46: 299–301.PubMedCrossRefGoogle Scholar
  96. 96.
    Costa, F. V., E. Ambrosini, L. Montebugnoli, L. Paccaloni, L. Vasconi, and B. Magnani. 1981. Effects of a low-salt diet and of acute salt loading on blood pressure and intralymphocytic sodium concentration in young subjects with borderline hypertension. Clin. Sci. 61: 21s - 23s.PubMedGoogle Scholar
  97. 97.
    Crosby, W. H. 1952. The pathogenesis of spherocytes and leptocytes (target cells). Blood 7: 261–274.PubMedGoogle Scholar
  98. 98.
    Cruikshank, J. K., and D. G. Beevers. 1982. Epidemiology of hypertension in blacks and whites. Clin. Sci. 62: 1–6.Google Scholar
  99. 99.
    Cumberbatch, M., and D. B. Morgan. 1981. Relations between sodium transport and sodium concentration in human erythrocytes in health and disease. Clin. Sci. 60: 555–564.PubMedGoogle Scholar
  100. 100.
    Cusi, D., C. Barlassina, M. Ferrandi, P. Palazzi, E. Celega, and G. Bianchi. 1981. Relationship between altered Na-K cotransport and Na-Li countertransport in the erythrocytes of “essential” hypertensive patients. Clin. Sci. 61: 33s - 36s.PubMedGoogle Scholar
  101. 101.
    Dagher, G., and R. P. Garay. 1980. A Na-K cotransport assay for essential hypertension. Can. J. Biochem. 58: 1069–1074.PubMedGoogle Scholar
  102. 102.
    D’Amico, G. 1958. Red cell Na and K in congestive heart failure, essential hypertension and myocardial infarction. Am. J. Med. Sci. 236: 156–161.PubMedCrossRefGoogle Scholar
  103. 103.
    Danon, M. J., W. E. Marshall, and A. Omachi. 1977. Erythrocyte metabolism in muscular dystrophy. Neurology 27: 398.Google Scholar
  104. 104.
    Danon, M. J., W. E. Marshall, and A. Omachi. 1978. Erythrocyte metabolism in muscular dystrophy. Arch. Neurol. 35: 592–595.PubMedCrossRefGoogle Scholar
  105. 105.
    Das, S. K., and C. N. Rajagopalan. 1980. Superoxide dismutase, glutathione peroxidase, catalase, and lipid peroxidation of normal and sickled erythrocytes. Br. J. Haematol. 44: 87–92.PubMedCrossRefGoogle Scholar
  106. 106.
    Davidson, J. S., L. H. Opie, and B. Keding. 1982. Sodium-potassium cotransport activity as genetic marker in essential hypertension. Br. Med. J. 284: 539–541.CrossRefGoogle Scholar
  107. 107.
    Dayson, H., and J. F. Daniell. 1952. The Permeability of Natural Membranes. Cambridge University Press, London.Google Scholar
  108. 108.
    Dean, J., and A. N. Schechter. 1978. Sickle cell anemia: Molecular and cellular bases of therapeutic approaches. N. Engl. J. Med. 299: 752–763.PubMedCrossRefGoogle Scholar
  109. 109.
    Demendonca, M., M. Grichois, R. P. Garay, J. Sassard, D. BenIshay, and P. Meyer. 1980. Abnormal net Na and K fluxes in erythrocytes of three varieties of hypertensive rats. Proc. Natl. Acad. Sci. USA 77: 4283–4286.CrossRefGoogle Scholar
  110. 110.
    Demisch, V. L., and H. J. Bochnik. 1976. Zur Verbesserung der Lithiumprophylaxe endogen phasischer Psychosen: Aspekte der parallelen Lithiumbestimmung in Serum und in Erythrozyten. Arzneim. Forsch. 26: 1149–1151.Google Scholar
  111. 111.
    DePirro, R., A. Fusco, R. Lauro, I. Testa, F. Ferreti, and C. DeMartinis. 1980. Erythrocyte insulin receptors in non-insulindependent diabetes mellitus. Diabetes 29: 96–99.PubMedCrossRefGoogle Scholar
  112. 112.
    De Wardener, H., and G. A. MacGregor. 1980. Further observations on Dahl’s hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: Its possible role in essential hypertension. Kidney Int. 18: 1–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Dintenfass, L., and A. Girolani. 1978. Rigidity of red cells in essential hypertension. Haemostasis 7: 298–302.PubMedGoogle Scholar
  114. 114.
    Dise, C. A., D. B. P. Goodman, W. C. Lake, A. Hodson, and H. Rasmussen. 1977. Enhanced sensitivity to calcium in Duchenne muscular dystrophy. Biochem. Biophys. Res. Commun. 79: 1286–1290.PubMedCrossRefGoogle Scholar
  115. 115.
    Dixon, E., and R. M. Winslow. 1981. The interaction between Ca,Mg-ATPase and the soluble activator (calmodulin) in erythrocytes containing haemoglobin S. Br. J. Haematol. 47: 391–397.PubMedCrossRefGoogle Scholar
  116. 116.
    Donis, E., G. N. Pandey, and J. M. Davis. 1975. Genetic determinants of lithium ion distribution: An in vitro and in vivo monozygotic-dizygotic twin study. Arch. Gen. Psychiatry 32: 1097–1102.CrossRefGoogle Scholar
  117. 117.
    Doms, E., G. N. Pandey, and A. Frazer. 1974. Genetic determinant of lithium ion distribution. I. An in vitro monozygotic-dizygotic twin study. Arch. Gen. Psychiatry 31: 463–465.Google Scholar
  118. 118.
    Doms, E., G. N. Pandey, R. Shaughnessy, and J. M. Davis. 1980. Lithium transport across the RBC membrane: A study of genetic factors. Arch. Gen. Psychiatry 37: 80–81.CrossRefGoogle Scholar
  119. 119.
    Doms. E., G. N. Pandey, R. Shaughnessy, M. Gaviria, E. Val, S. Eriksen, and J. M. Davis. 1979. Lithium transport across red cell membrane: A cell membrane abnormality in manic-depressive patients. Science 205: 932–934.CrossRefGoogle Scholar
  120. 120.
    Dowben, R. M., and K. R. Holley. 1959. Erythrocyte alterations in muscle disease. J. Lab. Clin. Med. 54: 867–870.PubMedGoogle Scholar
  121. 121.
    Dreher, K. L., J. W. Eaton, E. Berger, K. P. Breslawee, P. L. Blackshear, and J. G. White. 1980. Calcium-induced erythrocyte rigidity. Am. J. Pathol. 101: 543–556.PubMedGoogle Scholar
  122. 122.
    Duhm, J., and B. F. Becker. 1978. Studies on the lithium transport across the red cell membrane. IV. Interindividual variations in the Na-dependent Li countertransport system of human erythrocytes. Pfluegers Arch. 370: 211–219.Google Scholar
  123. 123.
    Duhm, J., F. Eisenried, B. F. Becker, and W. Greil. 1976. Studies on the lithium transport across the red cell membrane. I. Li uphill transport by the Na-dependent Li countertransport system of human erythrocytes. Pfluegers Arch. 364: 147–155.CrossRefGoogle Scholar
  124. 124.
    Duhm, J., and B. O. Gobel. 1982. Sodium-lithium exchange and sodium-potassium cotransport in human erythrocytes. I. Evaluation of a simple uptake test to assess the activity of the two transport systems. Hypertension 4: 468–476.PubMedGoogle Scholar
  125. 125.
    Duhm, J., B. Gobel, R. Lorenz, and P. L. Weber. 1981. Na-K cotransport and Na-Li countertransport in erythrocytes from essential hypertensive patients. Pfluegers Arch. Suppl. 391: R21.Google Scholar
  126. 126.
    Duhm, J., B. O. Gobel, R., Lorenz, and P. L. Weber. 1982. Sodium-lithium exchange and sodium-potassium cotransport in human erythrocytes. II. A simple uptake test applied to normotensive and essential hypertensive individuals. Hypertension 4: 477–482.PubMedGoogle Scholar
  127. 127.
    Dunham, P. B., G. W. Steward, and J. C. Ellory. 1980. Chloride-activated passive potassium transport in human erythrocytes. Proc. Natl. Acad. Sci. USA 77: 1711–1715.PubMedCrossRefGoogle Scholar
  128. 128.
    Dutcher, P. O., G. B. Segal, S. A. Feig, D. R. Miller, and M. R. Klemperer. 1975. Cation transport and its altered regulation in human stomatocytic erythrocytes. Pediatr. Res. 9: 924–927.PubMedGoogle Scholar
  129. 129.
    Dzandu, J. K., and R. M. Johnson. 1980. Membrane protein phosphorylation in intact normal and sickle cell erythrocytes. J. Biol. Chem. 255: 63–82.Google Scholar
  130. 130.
    Eaton, J. W., T. D. Skelton, H. S. Swofford, C. E. Kolpin, and H. S. Jacob. 1973. Elevated erythrocyte calcium in sickle cell disease. Nature (London) 246: 105–106.CrossRefGoogle Scholar
  131. 131.
    Editorial. 1980. Hypertension in blacks and whites. Lancet 2: 73–74.Google Scholar
  132. 132.
    Edmonson, R. P. S., R. D. Thomas, P. J. Hilton, J. Patrick, and N. F. Jones. 1975. Abnormal leukocyte composition and sodium transport in essential hypertension. Lancet 1: 1003–1005.CrossRefGoogle Scholar
  133. 133.
    Ehrlich, B. E., and J. M. Diamond. 1980. Lithium, membranes, and manic-depressive illness. J. Membr. Biol. 52: 187–200.PubMedCrossRefGoogle Scholar
  134. 134.
    Ehrlich, B. E., J. M. Diamond, W. Kaye, E. M. Ornita, and L. Gosenfeld. 1979. Lithium transport in erythrocytes from a pair of twins with manic disorder. Am. J. Psychiatry 136: 1477–1478.PubMedGoogle Scholar
  135. 135.
    Eisinger, J., J. Flores, and J. M. Salhany. 1982. Association of cytosol hemoglobin with the membrane in intact erythrocytes. Proc. Natl. Acad. Sci. USA 79: 408–412.PubMedCrossRefGoogle Scholar
  136. 136.
    Elston, R. C. 1972. Pedigree analysis of quantitative traits. Am. J. Hum. Genet. 24: 37a.Google Scholar
  137. 137.
    Englehardt, R. 1976. Impaired reassembly of red blood cell membrane components in hereditary spherocytosis. In: Membranes and Disease. L. Bolis and J. F. Hoffman, eds. Raven Press, New York. pp. 75–80.Google Scholar
  138. 138.
    Evans, E. A., and R. M. Hochmuth. 1978. Mechanochemical properties of membranes. Curr. Top. Membr. Transp. 10: 1–65.CrossRefGoogle Scholar
  139. 139.
    Eylar, E. H., M. A. Madoff, O. V. Brody, and J. L. Oncley. 1962. The contribution of sialic acid to the surface charge of the erythrocyte. J. Biol. Chem. 237: 1992–2000.PubMedGoogle Scholar
  140. 140.
    Kaul, D. K., M. E. Fabry, P. Windish, S. Baez, and R. L. Nagel. 1983. Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics. J. Clin. Invest. 72: 22–31.PubMedCrossRefGoogle Scholar
  141. 141.
    Fadeke Aderounmu, A., and L. A. Salako. 1979. Abnormal cation composition and transport in erythrocytes from hypertensive patients. Eur. J. Clin. Invest. 9: 369–375.PubMedCrossRefGoogle Scholar
  142. 142.
    Fairbanks, G. 1980. The red cell membrane in normal and abnormal states. In: Red Blood Cell and Lens Metabolism. S. K. Srivistava, ed. Elsevier, Amsterdam. pp. 191–212.Google Scholar
  143. 143.
    Fairbanks, G., V. Patel, and J. E. Dino. 1981. Biochemistry of ATP-dependent red cell membrane shape change. Scand. J. Clin. Lab. Invest. 41 (Suppl. 156): 135–140.CrossRefGoogle Scholar
  144. 144.
    Fales, F. W. 1978. Water distribution in blood during sickling of erythrocytes. Blood 51: 703–709.PubMedGoogle Scholar
  145. 145.
    Falk, R. S., D. Campion, D. Guthrie, R. S. Sparks, and C. F. Fox. 1979. Phosphorylation of red cell membrane proteins in Duchenne muscular dystrophy. N. Engl. J. Med. 300: 258–259.PubMedGoogle Scholar
  146. 146.
    Farvel, Z., A. A. Brickman, H. R. Kaslow, V. M. Brothers, and H. R. Bourne. 1980. Defect of receptor-cyclase coupling protein in pseudohypoparathyroidism. N. Engl. J. Med. 303: 237–242.CrossRefGoogle Scholar
  147. 147.
    Feig, P., P. Mitchell, and R. I. Sha’afi. 1982. Further characterization of the sodium transport abnormality found in red blood cells of subjects with essential hypertension. Kidney Int. 21: 187.Google Scholar
  148. 148.
    Feo, C. J., S. Fischer, J. P. Piau, M. J. Grange, and G. Tchernia. 1980. Premier observation de l’absence d’une protein de la membrane erythrocytaire (Bande 4.1) dans un cas d’anemie elliptocytaire familiale. Nouv. Rev. Fr. Hematol. 22: 315–325.PubMedGoogle Scholar
  149. 149.
    Finne, J. 1980. Identification of the blood group ABH-active glycoprotein components of human erythrocyte membranes. Eur. J. Biochem. 104: 181–189.PubMedCrossRefGoogle Scholar
  150. 150.
    Fischer, E. R., E. Silvestri, J. W. Vester, S. Nolan, U. Ahmad, and T. S. Danowski. 1976. Increased erythrocyte osmotic fragility in pseudohypertrophic muscular dystrophy. J. Am. Med. Assoc. 236: 955.CrossRefGoogle Scholar
  151. 151.
    Fischer, S. M. Tortolero, J. P. Piau, J. Delaunay, and G. Schapira. 1978. Protein kinase and adenylate cyclase of erythrocyte membrane from patients with Duchenne muscular dystrophy. Clin. Chim. Acts 88: 437–440.CrossRefGoogle Scholar
  152. 152.
    Fitzgibbon, W. R., T. O. Morgan, and J. B. Meyers. 1980. Erythrocyte 22Na efflux and urinary sodium excretion in essential hypertension. Clin. Sci. 59: 195s - 197s.PubMedGoogle Scholar
  153. 153.
    Forrester, T. E., and G. A. O. Alleyne. 1980. Leukocyte electrolytes and sodium efflux rate constants in the hypertension of pre-eclampsia. Clin. Sci. 59: 199s - 201s.PubMedGoogle Scholar
  154. 154.
    Fossel, E. T., and A. K. Solomon. 1981. Relation between red cell membrane Na,K-ATPase and band 3 protein. Biochim. Biophys. Acta 649: 557–571.PubMedCrossRefGoogle Scholar
  155. 155.
    Frazer, A., J. Mendels, D. Brunswick, J. London, M. Pring, T. A. Ramsey, and J. Rybakowski. 1978. Erythrocyte concentrations of the lithium ion: Clinical correlates and mechanisms of action. Am. J. Psychiatry 135: 1065–1069.PubMedGoogle Scholar
  156. 156.
    Friedman, S. M., M. Nakashima, R. A. Mclndoe, and C. L. Friedman. 1976. Increased erythrocyte permeability to Li and Na in the spontaneously hypertensive rat. Experientia 32: 476–478.PubMedCrossRefGoogle Scholar
  157. 157.
    Funder, J., D. C. Tosteson, and J. O. Wieth. 1978. Effects of bicarbonate on lithium transport in human red cells. J. Gen. Physiol. 71: 721–746.PubMedCrossRefGoogle Scholar
  158. 158.
    Furthmayer, H. 1978. Structural comparison of glycophorins and immunochemical analysis of genetic variants. Nature (London) 271: 519–524.CrossRefGoogle Scholar
  159. 159.
    Furuhjelm, U., G. Myllyla, H. R. Nevanlinna, S. Nordling, A. Pirkola, J. Garvin, A. Gooch, R. Sanger, and P. Tippett. 1969. The red cell phenotype En(a-) and the anti-Ena serological and physiochemical aspects. Vox Sang. 17: 256–278.PubMedCrossRefGoogle Scholar
  160. 160.
    Gaffney, B. J., D. B. Drachman, D. C. Lin, and G. Tennekoon. 1980. Spin-label studies of erythrocytes in myotonic dystrophy: No increase in membrane fluidity. Neurology 30: 272–276.PubMedGoogle Scholar
  161. 161.
    Gahmberg, C. G., G. Myllyla, J. Leikola, A. Pirkola, and S. Nordling. 1976. Absence of the major sialoglycoprotein in the membrane of human En(a-) erythrocytes and increased glycosylation of band 3. J. Biol. Chem. 251: 6108–6116.PubMedGoogle Scholar
  162. 162.
    Galbraith, D. A., and D. C. Watts. 1980. Changes in some cytoplasmic enzymes from red cells fractionated into age groups by centrifugation in Ficoll/Triosil gradients: Comparison of normal humans and patients with Duchenne muscular dystrophy. Biochem. J. 191: 63–70.PubMedGoogle Scholar
  163. 163.
    Galey, W. R., A. P. Evan, P. S. van Nice, W. G. Dail, B. M. Wimer, and R. A. Cooper. 1978. Morphology and physiology of the McLeod erythrocyte. Vox Sang. 34: 152–161.PubMedCrossRefGoogle Scholar
  164. 164.
    Gambhir, K. K., J. A. Archer, and C. J. Bradley. 1978. Characteristics of human erythrocyte insulin receptors. Diabetes 27: 701–708.PubMedCrossRefGoogle Scholar
  165. 165.
    Gambhir, K. K., J. A. Archer, S. G. Nerurkar, I. A. Cruz, and M. Sanders. 1981. Erythrocyte insulin receptors in chronic renal failure. Nephron 28: 4–10.PubMedCrossRefGoogle Scholar
  166. 166.
    Garay, R. P., N. Adragna, M. Canessa, and D. C. Tosteson. 1981. Outward Na and K cotransport in human red cells. J. Membr. Biol. 62: 169–174.PubMedCrossRefGoogle Scholar
  167. 167.
    Garay, R. P., and G. Dagher. 1980. Erythrocyte Na and K transport systems in essential hypertension. In: Intracellular Electrolytes and Arterial Hypertension. H. Zumkley and H. Losse, eds. Thieme, Stuttgart. pp. 69–76.Google Scholar
  168. 168.
    Garay, R. P., G. Dagher, and P. Meyer. 1980. An inherited sodium ion-potassium ion cotransport defect in essential hypertension. Clin. Sci. 59: 191s - 193s.PubMedGoogle Scholar
  169. 169.
    Garay, R. P., G. Dagher, M. G. Pernollet, M. A. Devynk, and P. Meyer. 1980. Inherited defect in a Na,K-cotransport system in erythrocytes from essential hypertensive patients. Nature (London) 284: 281–283.CrossRefGoogle Scholar
  170. 170.
    Garay, R. P., M. Demendonca, J. L. Elghozi, M. A. Devynk, G. Dagher, M. G. Pernollet, M. L. Grichois, D. Ben-Ishay, and P. Meyer. 1979. Clinical and pathological relevance of erythrocyte cation fluxes measurement in hypertension. Clin. Sci. 57: 329s - 332s.PubMedGoogle Scholar
  171. 171.
    Garay, R. P., J. L. Elghozi, G. Dagher, and P. Meyer. 1980. Laboratory distinction between essential and secondary hypertension by measurement of erythrocyte cation fluxes. N. Engl. J. Med. 302: 769–771.PubMedCrossRefGoogle Scholar
  172. 172.
    Garay, R. P., and P. Meyer. 1979. A new test showing abnormal net Na and K fluxes in erythrocytes of essential hypertension patients. Lancet 1: 349–353.PubMedCrossRefGoogle Scholar
  173. 173.
    Gardos, G. 1959. The role of calcium in the potassium permeability of human erythrocytes. Acta Physiol. Acad. Sci. Hung. 15: 121–125.Google Scholar
  174. 174.
    Gessler, U. 1962. Intra-und extrazellulare elektrolytveranderungen bei essentieller Hypertonie vor und nach Behandlung. Z. Kreislaufforsch. 51: 177–183.PubMedGoogle Scholar
  175. 175.
    Gillies, R. J. 1982. The binding site for aldolase and G3PDH in erythrocyte membranes. Trends Biochem. Sci. 7: 41–42.Google Scholar
  176. 176.
    Glader, B. E. 1976. Salicylate-induced injury of pyruvate kinase-deficient erythrocytes. N. Engl. J. Med. 294: 916–918.PubMedCrossRefGoogle Scholar
  177. 177.
    Glader, B. E., N. Fortier, M. M. Albala, and D. G. Nathan. 1974. Congenital hemolytic anemia associated with dehydrated erythrocytes and increased potassium loss. N. Engl. J. Med. 291: 491–496.PubMedCrossRefGoogle Scholar
  178. 178.
    Glader, B. E., S. E. Lux, A. Muller-Soyano, O. S. Platt, R. D. Propper, and D. G. Nathan. 1978. Energy reserve and cation composition of irreversibly sickled cells in vivo. Br. J. Haematol. 40: 527–532.PubMedCrossRefGoogle Scholar
  179. 179.
    Glader, B. E., and D. G. Nathan. 1978. Cation permeability alterations during sickling: Relationship to cation composition and cellular hydration of irreversibly sickled cells. Blood 51: 983–989.PubMedGoogle Scholar
  180. 180.
    Glader, B. E., and D. W. Sullivan. 1979. Erythrocyte disorders leading to potassium loss and cellular dehydration. In: Normal and Abnormal Red Cell Membranes. S. E. Lux, V. T. Marchesi, and C. F. Fox, eds. Liss, New York. pp. 503–513.Google Scholar
  181. 181.
    Glynn, I. M., and S. J. D. Karlish. 1975. The sodium pump. Annu. Rev. Physiol. 37: 13–55.PubMedCrossRefGoogle Scholar
  182. 182.
    Godin, D. V., M. A. Bridges, and P. J. M. MacLeod. 1978. Chemical compositional studies of erythrocyte membranes in Duchenne muscular dystrophy. Res. Commun. Chem. Pathol. Pharmacol. 20: 331–349.PubMedGoogle Scholar
  183. 183.
    Goldberg, M. A., A. T. Lalos, and H. F. Bunn. 1981. The effect of erythrocyte membrane preparations on the polymerization of sickle hemoglobin. J. Biol. Chem. 256: 193–197.PubMedGoogle Scholar
  184. 184.
    Gonick, H. C., H. J. Kramer, W. Paul, and E. Lu. Circulating inhibitor of sodium-potassium-activated adenosine triphosphatase after expansion of extracellular fluid volume in rats. Clin. Sci. Mol. Med. 53: 329–334.Google Scholar
  185. 185.
    Gopinath, R. M., and F. F. Vincenzi. 1979. (Ca + Mg)-ATPase activity of sickle cell membranes: Decreased activation by red blood cell cytoplasmic activator. Am. J. Hematol. 7: 303–312.PubMedCrossRefGoogle Scholar
  186. 186.
    Gorter, E., and F. Grendel. 1925. On the bimolecular layers of lipids on the chromocytes of the blood. J. Exp. Med. 41: 439–443.PubMedCrossRefGoogle Scholar
  187. 187.
    Gratzer, W. B. 1981. The red cell membrane and its cytoskeleton. Biochem. J. 198: 1–8.PubMedGoogle Scholar
  188. 188.
    Green, F. A. 1972. Erythrocyte membrane lipids and Rh antigen activity. J. Biol. Chem. 247: 881–887.PubMedGoogle Scholar
  189. 189.
    Greenquist, A. C., and S. B. Shohet. 1976. Phosphorylation in erythrocyte membranes from abnormally shaped cells. Blood 438: 877–886.Google Scholar
  190. 190.
    Grey, J. E., H. J. Gitelman, and A. D. Roses. 1980. Myotonic muscular dystrophy: Defective phospholipid metabolism in the erythrocyte plasma membrane. J. Clin. Invest. 65: 1478–1482.PubMedCrossRefGoogle Scholar
  191. 191.
    Grey, J. E., H. J. Gitelman, and A. D. Roses. 1981. Comment on erythrocyte phospholipid metabolism in myotonic dystrophy. Ann. Neurol. 10: 494.PubMedCrossRefGoogle Scholar
  192. 192.
    Gunn, R. B., D. N. Silvers, and W. F. Rosse. 1972. Potassium permeability in beta thalassemia minor red cells. J. Clin. Invest. 51: 1043–1050.PubMedCrossRefGoogle Scholar
  193. 193.
    Haas, M., J. Schooler, and D. C. Tosteson. 1975. Coupling of lithium to sodium transport in human red cells. Nature (London) 258: 425–427.CrossRefGoogle Scholar
  194. 194.
    Haddy, F. J. 1980. Mechanism, prevention, and therapy of sodium-dependent hypertension. Am. J. Med. 69: 746–758.PubMedCrossRefGoogle Scholar
  195. 195.
    Haddy, F. J., M. B. Pamani, and D. L. Clough. 1979. Humoral factors and the sodium-potassium pump in volume expanded hypertension. Life Sci 24: 2105–2118.PubMedCrossRefGoogle Scholar
  196. 196.
    Haest, C. W. M., G. Plasa, and B. Deuticke. 1981. Selective removal of lipids from the outer membrane layer of human erythrocytes without hemolysis. Biochim. Biophys. Acta 609: 701–708.Google Scholar
  197. 197.
    Haest, C. W. M., G. Plasa, D. Kamp, and B. Deuticke. 1978. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim. Biophys. Acta 509: 21–32.PubMedCrossRefGoogle Scholar
  198. 198.
    Hakamori, S. 1981. Blood group ABH and Ii antigens of human erythrocytes: Chemistry, polymorphism, and their developmental change. Semin. Hematol. 28: 39–62.Google Scholar
  199. 199.
    Hargens, A. R., L. J. Bowie, D. Lent, S. Caruthers, R. M. Peters, H. T. Hammel, and P. F. Scholander. 1980. Sickle-cell hemoglobin: Fall in osmotic pressure upon deoxygenation. Proc. Natl. Acad. Sci. USA 77: 4310–4312.PubMedCrossRefGoogle Scholar
  200. 200.
    Hargreaves, W. R., K. N. Giedd, A. Verkleij, and D. Branton. 1980. Reassociation of ankyrin with band 3 in erythrocyte membranes and in lipid vesicles. J. Biol. Chem. 255: 11965–11972.PubMedGoogle Scholar
  201. 201.
    Harris, H. W., and S. E. Lux. 1980. Structural characterization of the phosphorylation sites of human erythrocyte spectrin. J. Biol. Chem. 255: 11512–11520.PubMedGoogle Scholar
  202. 202.
    Hayashi, S., R. Kootumo, S. Ishigami, G. Tsujino, S. Saeki, and T. Tanaka. 1974. Abnormality in a specific protein of the erythrocyte membrane in hereditary spherocytosis. Biochem. Biophys. Res. Commun. 57: 1038–1044.PubMedCrossRefGoogle Scholar
  203. 203.
    Hebbel, R. P., O. Yamada, C. F. Moldow, H. S. Jacob, J. C. White, and J. W. Eaton. 1980. Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: Possible mechanism for microvascular occlusion in sickle cell disease. J. Clin. Invest. 65: 154–160.PubMedCrossRefGoogle Scholar
  204. 204.
    Henningsen, N. C., S. Mattsson, B. Nosslin, D. Nelson, and O. Ohlsson. 1979. Abnormal whole body and cellular (erythrocytes) turnover of 22Na in normotensive relatives of probands with established essential hypertension. Clin. Sci. 57: 321s - 324s.PubMedGoogle Scholar
  205. 205.
    Hill, J. S., W. H. Sawyer, G. J. Howlett, and J. S. Wiley. 1981. Hereditary spherocytosis of man: Altered binding of cytoskeletal components to the erythrocyte membrane. Biochem. J. 201: 259–266.Google Scholar
  206. 206.
    Hjelm, M. 1974. Methodological aspects of current procedures to separate erythrocytes into age groups. In: Cellular and Molecular Biology of Erythrocytes. H. Yoshikawa and S. Rapoport, eds. University Park Press, Baltimore. pp. 427–444.Google Scholar
  207. 207.
    Hobbs, A. S., R. A. Bromback, and B. W. Festoff. 1979. Monovalent cation transport in myotonic dystrophy: Na-K pump ratio in erythrocytes. J. Neurol. Sci. 41: 299–306.PubMedCrossRefGoogle Scholar
  208. 208.
    Hodson, A., and D. Pleasure. 1977. Erythrocyte cation-activated adenosine triphosphatase in Duchenne muscular dystrophy. J. Neurol. Sci. 32: 361–369.PubMedCrossRefGoogle Scholar
  209. 209.
    Hofrichter, J., P. D. Ross, and W. A. Eaton. 1974. Kinetics and mechanism of deoxyhemoglobin S gelation: A new approach to understanding sickle cell disease. Proc. Nad. Acad. Sci. USA 71: 4864–4868.CrossRefGoogle Scholar
  210. 210.
    Hokin-Neaverson, M., W. A. Burchhardt, and J. W. Jefferson. 1976. Increased erythrocyte Na pump and Na,K-ATPase activity during lithium therapy. Res. Commun. Chem. Pathol. Pharmacol. 14: 117–126.PubMedGoogle Scholar
  211. 211.
    Hokin-Neaverson, M., D. A. Spiegel, and C. W. Lewis. 1975. Deficiency of erythrocyte sodium pump activity in bipolar manic-depressive psychosis. Life Sci. 15: 1739–1748.CrossRefGoogle Scholar
  212. 212.
    Holle, A., W. Mangels, M. Dreyer, J. Kuhnau, and H. W. Rudiger. 1981. Biguanide treatment increases the number of insulin-receptor sites on human erythrocytes. N. Engl. J. Med. 305: 563–566.PubMedCrossRefGoogle Scholar
  213. 213.
    Honig, G. R., P. S. Lacson, and H. S. Maurer. A new familial disorder with abnormal erythrocyte morphology and increased permeability of the erythrocytes to sodium and potassium. Pediatr. Res. 5: 159–162.Google Scholar
  214. 214.
    Howells, K. F. 1976. Structural changes of erythrocyte membranes in muscular dystrophy. Res. Exp. Med. 168: 213–217.CrossRefGoogle Scholar
  215. 215.
    Howland, J. L. 1974. Abnormal potassium conductance associated with genetic muscular dystrophy. Nature (London) 251: 724–725.CrossRefGoogle Scholar
  216. 216.
    Howland, J. L., and S. L. Iyer. 1977. Erythrocyte lipids in heterozygous carriers of Duchenne’s muscular dystrophy. Science 198: 309–310.PubMedCrossRefGoogle Scholar
  217. 217.
    Hudson, C., D. Lee, D. G. Cooper, C. M. Giles, E. W. Iken, J. Poole, D. Grimaldi, and D. J. Anstee. 1979. Mk in three generations of an English family. J. Immunogenet. 6: 391–401.CrossRefGoogle Scholar
  218. 218.
    Hull, K., and A. D. Roses. 1976. Stoichiometry of sodium and potassium transport in erythrocytes of patients with myotonic muscular dystrophy. J. Physiol. (London) 254: 169–181.Google Scholar
  219. 219.
    Ibsen, K. K., H. A. Jensen, J. O. Wieth, and J. Funder. 1982. Essential hypertension: Sodium-lithium countertransport in erythrocytes from patients and from children having one hypertensive parent. Hypertension 4: 703–709.PubMedGoogle Scholar
  220. 220.
    Igisu, H., S. Mawatari, and Y. Kuroiwa. 1979. Erythrocyte ATP in Duchenne dystrophy: Effects of ouabain and propranolol. Neurology 29: 992–995.PubMedGoogle Scholar
  221. 221.
    Iyer, S. L., P. A. Hoenig, A. P. Sherblom, and J. L. Howland. 1977. Membrane function affected by genetic muscular dystrophy. 1. Erythrocyte ghost protein kinase. Biochem. Med. 18: 384–391.PubMedCrossRefGoogle Scholar
  222. 222.
    Jacob, H. S. 1972. The abnormal red cell membrane in hereditary spherocytosis: Evidence for the crucial role of membrane micro-filaments. Br. J. Haematol. 23 (Suppl.): 35–44.PubMedCrossRefGoogle Scholar
  223. 223.
    Jacobs, M. A., and D. R. Stewart. 1947. Osmotic properties of the erythrocyte. XII. Ionic and osmotic equilibrium with a complex external solution. J. Cell. Comp. Physiol. 30: 79–103.CrossRefGoogle Scholar
  224. 224.
    Jaffe, E. R., and E. L. Gottfried. 1968. Hereditary nonspherocytic hemolytic disease associated with an altered phospholipid composition of the erythrocytes. J. Clin. Invest. 47: 1375–1381.PubMedCrossRefGoogle Scholar
  225. 225.
    Jancik, J., R. Schauer, and H. Streicher. 1975. Influence of membrane-bound N-acetyl neuraminic acid on the survival of erythrocytes in man. Hoppe-Seylers Z. Physiol. Chem. 356: 1329–1331.Google Scholar
  226. 226.
    Jarvis, S. M., J. D. Young, M. Ansay, A. L. Archibald, R. A. Harkness, and R. J. Simmonds. 1980. Is inosine the physiological energy source of pig erythrocytes? Biochim. Biophys. Acta 597: 183–188.CrossRefGoogle Scholar
  227. 227.
    Johnson, E. C., M. K. Young, P. A. Stacy, and C. H. Beatty. 1979. Erythrocyte glucose metabolism in Duchenne muscular dystrophy. Clin. Chim. Acta 98: 77–85.PubMedCrossRefGoogle Scholar
  228. 228.
    Johnsson, R., and N. E. Saris. 1981. Plasma and erythrocyte lipids in hereditary spherocytosis. Clin. Chim. Acta 114: 263–268.PubMedCrossRefGoogle Scholar
  229. 229.
    Johnsson, S., R. Johnsson, J. Gripenberg, and P. Vuopio. 1980. The fluidity gradient in erythrocyte membranes in hereditary spherocytosis: A spin label study. Br. J. Haematol. 46: 73–78.PubMedCrossRefGoogle Scholar
  230. 230.
    Jones, M. N., and J. K. Nickson. 1981. Monosaccharide transport proteins of the human erythrocyte membrane. Biochim. Biophys. Acta 650: 1–20.PubMedGoogle Scholar
  231. 231.
    Jope, R. S., D. J. Jenden, B. E. Ehrlich, and J. M. Diamond. 1978. Choline accumulates in erythrocytes during lithium therapy. N. Engl. J. Med. 299: 833–834.PubMedGoogle Scholar
  232. 232.
    Junbu, Y., S. Sato, T. Nakao, and M. Nakao. 1982. Ankyrin is necessary for both drug-induced and ATP-induced shape change of human erythrocyte ghosts. Biochem. Biophys. Res. Commun. 104: 1087–1092.CrossRefGoogle Scholar
  233. 234.
    Kalofoutis, A., G. Jullien, and V. Spanos. 1977. Erythrocyte phospholipids in Duchenne muscular dystrophy. Clin. Chim. Acta 74: 85–87.PubMedCrossRefGoogle Scholar
  234. 235.
    Kan, Y. W., and A. M. Dozy. 1980. Evolution of the hemoglobin S and C genes in world populations. Science 209: 388–391.PubMedCrossRefGoogle Scholar
  235. 236.
    Kasahara, M., and P. C. Hinkle. 1977. Reconstitution and purification of the D-glucose transporter from human erythrocytes. J. Biol. Chem. 252: 7384–7390.PubMedGoogle Scholar
  236. 237.
    Kay, M. M. B. 1978. Role of physiologic autoantibody in the removal of senescent red cells. J. Supramol. Struct. 9: 555–567.PubMedCrossRefGoogle Scholar
  237. 238.
    Kim, H. D., M. G. Luthra, R. P. Watts, and L. Z. Stern. 1980. Factors influencing osmotic fragility of red blood cells in Duchenne’s muscular dystrophy. Neurology 30: 726–731.PubMedGoogle Scholar
  238. 239.
    Kim, H. D., R. P. Watts, M. G. Luthra, C. R. Schwalbe, R. T. Connor, and K. Brendel. 1980. A symbiotic relationship of energy metabolism between a “nonglycolytic” mammalian red cell and the liver. Biochim. Biophys. Acta 589: 256–263.PubMedCrossRefGoogle Scholar
  239. 240.
    Kimberling, W. J., R. A. Taylor, R. G. Chapman, and H. A. Lubs. 1978. Linkage and gene localization of hereditary spherocytosis (HS). Blood 52: 859–867.PubMedGoogle Scholar
  240. 241.
    Kirkpatrick, F. H., G. M. Woods, and P. L. Lacelle. 1975. Absence of one component of spectrin adenosine triphosphatase in hereditary spherocytosis. Blood 46: 945–954.PubMedGoogle Scholar
  241. 242.
    Klassen, G. A., and R. Blostein. 1969. Adenosine triphosphatase and myopathy. Science 163: 492–493.PubMedCrossRefGoogle Scholar
  242. 243.
    Kliman, H. J., and T. L. Steck. 1980. Association of glyceraldehyde-3-phosphate dehydrogenase with the human red cell membrane. J. Biol. Chem. 255: 6314–6321.PubMedGoogle Scholar
  243. 244.
    Knauf, P. A. 1979. Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure. Curr. Top. Membr. Transp. 12: 249–363.Google Scholar
  244. 245.
    Knauf, P. A., F. Proverbio, and J. F. Hoffman. 1974. Chemical characteristics and Pronase accessibility of the Na:K pump-associated phosphoprotein of human red blood cells. J. Gen. Physiol. 63: 305–323.PubMedCrossRefGoogle Scholar
  245. 246.
    Knauf, P. A., F. Proverbio, and J. F. Hoffman. 1974. Electrophoretic separation of different phosphoproteins associated with Ca-ATPase and Na,K-ATPase in human red cell ghosts. J. Gen. Physiol. 63: 324–336.PubMedCrossRefGoogle Scholar
  246. 247.
    Knorring, L., L. Oerland, and C. Ferris. 1976. Evaluation of the lithium RBC/plasma ratio as a predictor of the prophylactic effect of lithium in affective disorders. Pharmakopsychiatr. Neuropsychopharmakol. 9: 81–84.PubMedGoogle Scholar
  247. 248.
    Knox, E. G. 1977. Distribution of rhesus antigens on red cell surfaces. Br. J. Haematol. 37: 537–541.PubMedCrossRefGoogle Scholar
  248. 249.
    Koller, C. A., E. P. Orringer, and J. C. Parker. 1979. Quinine protects pyruvate kinase deficient red cells from dehydration. Am. J. Hematol. 7: 193–199.PubMedCrossRefGoogle Scholar
  249. 250.
    Kuiper, P. J. C., and A. Livne. 1972. Differences in fatty acid composition between normal erythrocytes and hereditary spherocytosis affected cells. Biochim. Biophys. Acta 260: 755–758.PubMedGoogle Scholar
  250. 251.
    Kunze, D., G. Reichmann, E. Egger, G. Leuschner, and E. Eckhardt. 1973. Erythrozyten lipide bei progressiver Muskeldystrophie. Clin. Chim. Acta 43: 333–341.PubMedCrossRefGoogle Scholar
  251. 252.
    Kuratsin-Mills, J., M. Kudo, and S. K. Addae. 1974. Cation content and transport characteristics of the sickle cell erythrocyte and their relationship with the structural changes in the membrane. Clin. Sci. Mol. Med. 46: 679–692.Google Scholar
  252. 253.
    Lande, W., K. Cerrone, and W. Mentzer. 1979. Congenital anemia with abnormal cation permeability and cold hemolysis in vitro. Blood 54: 29a.Google Scholar
  253. 254.
    Lange, Y., R. A. Hardesman, and T. L. Steck. 1982. Role of the reticulum in the stability and shape of the isolated human erythrocyte membrane. J. Cell Biol. 92: 714–721.PubMedCrossRefGoogle Scholar
  254. 255.
    Larsen, F. L., S. Katz, B. D. Roufogalis, and D. E. Brooks. 1981. Physiological shear stresses enhance the Ca permeability of human erythrocytes. Nature (London) 294: 667–668.CrossRefGoogle Scholar
  255. 256.
    Lauf, P. K., and C. H. Joiner. 1976. Increased potassium transport and ouabain binding in human Rh null red blood cells. Blood 48: 457–468.PubMedGoogle Scholar
  256. 257.
    Lawler, J., S.C. Liu, J. Prchal, and J. Palek. 1982. The molecular defect of spectrin in hereditary pyropoikilocytosis. Alterations in the trypsin resistant domain involved in spectrin self-association. Clin. Res. 30: 322A.Google Scholar
  257. 258.
    Lebo, R. V., A. V. Carrano, K. Burkhart, A. M. Dozy, L.-C. Yu, and Y. W. Kan. 1979. Assignment of human beta, gamma, and delta globin genes to the short arm of chromosome 11 by chromosome sorting and DNA restriction enzyme analysis. Proc. Natl. Acad. Sci. USA 76: 5804–5808.PubMedCrossRefGoogle Scholar
  258. 259.
    Lee, P., and M. M. Stevenson. 1974. Membrane permeability to sodium and potassium in Rh null red blood cells. Proc. Int. Congr. Physiol. Sci., 11th, New Delhi. 11: 16–18.Google Scholar
  259. 260.
    Levine, P., D. Tripodi, J. Struck, C. M. Zmijewski, and W. Pollack. 1973. Hemolytic anemia associated with Rh null but not with Bombay blood. Vox Sang. 24: 417–424.PubMedCrossRefGoogle Scholar
  260. 261.
    Levy, R., R. Zimlichman, A. Keynan, and A. Livne. 1982. The erythrocyte membrane in essential hypertension: Modified temperature dependence of Li efflux. Biochim. Biophys. Acta 685: 214–218.PubMedCrossRefGoogle Scholar
  261. 262.
    Lew, V. L., and R. M. Bookchin. 1980. A Ca-refractory state of the Ca-sensitive K permeability mechanism in sickle cell anemia red cells. Biochim. Biophys. Acta 602: 196–200.PubMedCrossRefGoogle Scholar
  262. 263.
    Lew, V. L., and H. G. Ferreira. 1978. Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes. Curr. Top. Membr. Transp. 10: 217–277.CrossRefGoogle Scholar
  263. 264.
    Lingsch, C., and K. Martin. 1976. An irreversible effect of lithium administration to patients. Br. J. Pharmacol. 57: 323–327.PubMedGoogle Scholar
  264. 265.
    Liu, S., and J. Palek. 1980. Spectrin tetramer-dimer equilibrium and the stability of erythrocyte membrane skeletons. Nature (London) 285: 586–588.CrossRefGoogle Scholar
  265. 266.
    Liu, S., J. Palek, and J. Prchal. 1981. Defective membrane skeletal assembly in hereditary elliptocytosis. In: Erythrocyte Membranes: Recent Clinical and Experimental Advances. W. C. Kruckeberg, J. W. Eaton, and G. J. Brewer, eds. Liss, New York. pp. 157–169.Google Scholar
  266. 267.
    Liu, S., J. Palek, J. Prchal, and R. P. Castleberry. 1981. Altered spectrin dimer-dimer association and red cell membrane instability in hereditary pyropoikilocytosis. J. Clin. Invest. 68: 597–605.PubMedCrossRefGoogle Scholar
  267. 268.
    Livne, A., B. Aloni, S. Moses, and P. J. C. Kuiper. 1973. Linolenoyl sorbitol and the fragility of hereditary spherocytes. Br. J. Haematol. 25: 429–435.PubMedCrossRefGoogle Scholar
  268. 269.
    Lloyd, S. J., and M. G. Nunn. 1978. Osmotic fragility of erythrocytes in Duchenne muscular dystrophy. Br. Med. J. 2: 252.PubMedCrossRefGoogle Scholar
  269. 270.
    Lo, S. S., W. H. Hitzig, and H. R. Marti. 1970. Stomatozytose. Schweiz. Med. Wochenschr. 100: 1977–1979.PubMedGoogle Scholar
  270. 271.
    Losse, H., H. Wehmeyer, and F. Wessels. 1960. Der Wasser-und Elektrolytgehalt von Erythrozyten bei arterieller Hypertonie. Klin. Wochenschr. 38: 393–395.PubMedCrossRefGoogle Scholar
  271. 272.
    Losse, H., W. Zidek, H. Zumkley, F. Wessels, and H. Vetter. 1981. Intracellular Na as a genetic marker of essential hypertension. Clin. Exp. Hypertens. 3: 627–640.PubMedCrossRefGoogle Scholar
  272. 273.
    Losse, H., H. Zumkley, and H. Wehmeyer. 1962. Untersuchungen uber den Elektrolyt-und Wassergehalt von Erythrozyten bei arterieller Hypertonie. Z. Kreislaufforsch. 51: 43–51.PubMedGoogle Scholar
  273. 274.
    Love, W. D., and G. E. Burch. 1953. Plasma and erythrocyte sodium and potassium concentrations in a group of southern white and Negro blood donors. J. Lab. Clin. Med. 41: 258–267.PubMedGoogle Scholar
  274. 275.
    Lubin, B., D. Chiu, J. Bastacky, B. Rodofson, and L. L. M. van Deenen. 1981. Abnormalities in membrane phospholipid organization in sickled erythrocytes. J. Clin. Invest. 67: 1643–1649.PubMedCrossRefGoogle Scholar
  275. 276.
    Lumb, E., and A. E. H. Emery. 1975. Erythrocyte deformation in Duchenne muscular dystrophy. Br. Med. J. 3: 467–468.PubMedCrossRefGoogle Scholar
  276. 277.
    Luthra, M. G., and D. A. Sears. 1982. Increased Ca, Mg, and Na + K ATPase activities in erythrocytes of sickle cell anemia. Blood 60: 1332–1336.PubMedGoogle Scholar
  277. 278.
    Luthra, M. G., L. Z. Stern, and H. D. Kim. 1979. Ca and MgATPase of red cells in Duchenne and myotonic dystrophy: Effect of soluble cytoplasmic activator. Neurology 29: 835–841.PubMedGoogle Scholar
  278. 279.
    Lutz, H. U., and J. Fehr. 1979. Total sialic acid content of glycophorins during senescence of human red blood cells. J. Biol. Chem. 254: 11177–11180.PubMedGoogle Scholar
  279. 280.
    Lux, S. E. 1979. Dissecting the red cell membrane. Nature (London) 281: 426–428.CrossRefGoogle Scholar
  280. 281.
    Lux, S. E. 1979. Spectrin-actin membrane skeleton of normal and abnormal red blood cells. Semin. Hematol. 16: 21–51.PubMedGoogle Scholar
  281. 282.
    Lux, S. E. 1982. The membrane skeleton of abnormal red blood cells: Workshop report. In: Differentiation and Function of Hematopoietic Cell Surfaces. V. T. Marchesi and R. Gallo, eds. Liss, New York. pp. 197–206.Google Scholar
  282. 283.
    Lux, S. E., and B. E. Glader. 1981. Disorders of the red cell membrane. In: Hematology of Infancy and Childhood, 2nd ed. D. G. Nathan and F. A. Oski, eds. Saunders, Philadelphia. pp. 456–565.Google Scholar
  283. 284.
    Lux, S. E., and K. John. 1978. The role of spectrin and actin in irreversibly sickled cells: Unsickling of “irreversibly” sickled ghosts by conditions which interfere with spectrin-actin polymerization. In: Biochemical and Clinical Aspects of Hemoglobin Abnormalities. W. S. Caughey, ed. Academic Press, New York. pp. 335–352.Google Scholar
  284. 285.
    Lux, S. E., K. John, and M. J. Karnovsky. 1976. Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells. J. Clin. Invest. 58: 955–963.PubMedCrossRefGoogle Scholar
  285. 286.
    Lyttkins, L., V. Soderberg, and L. Wetterberg. 1973. Increased lithium erythrocyte-plasma ratio in manic-depressive psychosis. Lancet 1: 40.CrossRefGoogle Scholar
  286. 287.
    Mahoney, J. R., N. L. Etkin, J. D. McSwigan, and J. W. Eaton. 1982. Assessment of red cell sodium transport in essential hypertension. Blood 59: 439–442.PubMedGoogle Scholar
  287. 288.
    Mahoney, J. R., N. L. Etkin, J. D. McSwigan, M. W. Forstoffel, J. R. Eckman, and J. W. Eaton. 1982. Racial differences in hypertension-associated RBC Na permeability. Clin. Res. 30: 338A.Google Scholar
  288. 289.
    Marchesi, V. T. 1979. Functional properties of the human red blood cell membrane. Semin. Hematol. 16: 3–20.PubMedGoogle Scholar
  289. 290.
    Marinetti, G. V., and K. Cattieu. 1982. Asymmetric metabolism of phosphatidylethanolamine in the human red cell membrane. J. Biol. Chem. 257: 245–248.PubMedGoogle Scholar
  290. 291.
    Markesbery, W. R., and D. A. Butterfield. 1977. Scanning electron microscopy studies of erythrocytes in Huntington’s disease. Biochem. Biophys. Res. Commun. 78: 560–564.PubMedCrossRefGoogle Scholar
  291. 292.
    Marsh, W. L., N. J. Marsh, A. Moore, W. A. Symmans, C. L. Johnson, and C. M. Redman. 1981. Elevated serum creatine phosphokinase in subjects with McLeod syndrome. Vox Sang. 40: 403–411.PubMedCrossRefGoogle Scholar
  292. 293.
    Marsh, W. L., R. Oyen, and M. E. Nichols. 1976. Kx antigen, the McLeod phenotype, and chronic granulomatous disease. Vox Sang. 31: 356–362.PubMedCrossRefGoogle Scholar
  293. 294.
    Marsh, W. L., R. Oyen, M. E. Nichols, and F. H. Allen. 1975. Chronic granulomatous disease and the Kell blood groups. Br. J. Haematol. 29: 247–262.PubMedCrossRefGoogle Scholar
  294. 295.
    Masys, D. R., P. A. Bromberg, and S. P. Balcerzak. 1974. Red cells shrink during sickling. Blood 44: 885–889.PubMedGoogle Scholar
  295. 296.
    Matheson, D., and J. L. Howland. 1974. Erythrocyte deformation in human muscular dystrophy. Science 184: 165–166.PubMedCrossRefGoogle Scholar
  296. 297.
    Matheson, D., and J. L. Howland. 1975. Erythrocytes in human muscular dystrophy [reply]. Science 187: 454.CrossRefGoogle Scholar
  297. 298.
    Matsumoto, N., Y. Yawata, and H. S. Jacob. 1977. Association of decreased membrane phosphorylation with red blood cell spherocytosis. Blood 49: 233–239.PubMedGoogle Scholar
  298. 299.
    Mawatari, S., M. Schonberg, and M. Olarte. 1976. Biochemical abnormalities of erythrocyte membrane in Duchenne dystrophy. Arch. Neurol. 33: 489–493.PubMedCrossRefGoogle Scholar
  299. 300.
    McManus, T. J. 1974. Alternate pathways for metabolism: A comparative view. In: The Human Red Cell in Vitro. T. J. Greenwalt and G. A. Jamieson, eds. Grune & Stratton, New York. pp. 49–61.Google Scholar
  300. 301.
    McManus, T. J., and C. Lambe. 1973. Species differences in nucleoside metabolism of red cells. In: Erythrocytes, Thrombocytes, Leukocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Williams, eds. Thieme, Stuttgart. pp. 135–139.Google Scholar
  301. 302.
    Mendels, J., and A. Frazer. 1973. Intracellular lithium concentration and clinical response: Towards a membrane theory of depression. J. Psychiatr. Res. 10: 9–18.PubMedCrossRefGoogle Scholar
  302. 303.
    Mendelwicz, J., and J. L. Fleiss. 1974. Linkage studies with X- chromosome markers in bipolar (manic-depressive) and unipolar (depressive) illness. Biol. Psychiatry 9: 261–294.Google Scholar
  303. 304.
    Mendlewicz, J., P. Verbanck, P. Linkowski, and J. Wilmotte. 1978. Lithium accumulation in erythrocytes of manic-depressive patients: An in vitro twin study. Br. J. Psychiatry 133: 436–444.PubMedCrossRefGoogle Scholar
  304. 305.
    Mentzer, W. C., R. L. Bahner, H. Schmidt-Schöenbein, S. H. Robinson, and D. G. Nathan. 1971. Selective reticulocyte destruction in erythrocyte pyruvate kinase deficiency. J. Clin. Invest. 50: 688–699.PubMedCrossRefGoogle Scholar
  305. 306.
    Mentzer, W. C., G. K. H. Lam, B. H. Lubin, A. Greenquist, S. L. Schrier, and W. Lande. 1978. Membrane effects of imidoesters in hereditary stomatocytosis. J. Supramol. Struct. 9: 275–288.PubMedCrossRefGoogle Scholar
  306. 307.
    Mentzer, W. C., B. H. Lubin, and S. Emmons 1976. Correction of the permeability defect in hereditary stomatocytosis by di-methyl adipimidate. N. Engl. J. Med. 294: 1200–1204.PubMedCrossRefGoogle Scholar
  307. 308.
    Mentzer, W. C., W. B. Smith, J. Goldstone, and S. B. Shohet. 1975. Hereditary stomatocytosis: Membrane and metabolic studies. Blood 46: 659–669.PubMedGoogle Scholar
  308. 309.
    Meyer, P., R. P. Garay, C. Nazaret, G. Dagher, M. Bellet, M. Broyer, and J. Finegold. 1981. Inheritance of abnormal erythrocyte cation transport in essential hypertension. Br. Med. J. 282: 1114–1117.CrossRefGoogle Scholar
  309. 310.
    Meyskins, F. L., and H. E. Williams. 1971. Adenosine metabolism in human erythrocytes. Biochim. Biophys. Acta 240: 170–179.Google Scholar
  310. 311.
    Miale, T. D., J. L. Frias, and D. L. Lawson. 1975. Erythrocytes in human muscular dystrophy. Science 187: 452.CrossRefGoogle Scholar
  311. 312.
    Miller, D. R., F. R. Rickles, M. A. Lichtman, P. L. Lacelle, J. Bates, and R. I. Weed. 1971. A new variant of hereditary hemolytic anemia with stomatocytosis and erythrocyte cation abnormality. Blood 38: 184–204.PubMedGoogle Scholar
  312. 313.
    Miller, S. E., A. D. Roses, and S. H. Appel. 1976. Scanning electron microscopy studies in muscular dystrophy. Arch. Neurol. 33: 172–174.PubMedCrossRefGoogle Scholar
  313. 314.
    Mishra, S. K., M. Hobson, and D. Desiah. 1980. Erythrocyte membrane abnormalities in human myotonic dystrophy. J. Neurol. Sci. 46: 333–340.PubMedCrossRefGoogle Scholar
  314. 315.
    Mollica, F., S. L. Volti, A. Rapisarda, G. Loingo, L. Pavone, and A. Vanella. 1980. Increased erythrocyte spermine in Duchenne muscular dystrophy. Pediatr. Res. 14: 1196–1198.PubMedCrossRefGoogle Scholar
  315. 316.
    Mollman, J. E., J. C. Cardenas, and D. E. Pleasure. 1980. Alteration of calcium transport in Duchenne erythrocytes. Neurology 30: 1236–1239.PubMedGoogle Scholar
  316. 317.
    Moore, R. B., and S. H. Appel. 1980. Methylation of membrane phospholipids in patients with myotonic and Duchenne muscular dystrophy. Exp. Neurol. 70: 380–391.PubMedCrossRefGoogle Scholar
  317. 318.
    Moore, S., C. F. Woodrow, and D. B. L. McClelland. 1982. Isolation of membrane components associated with human red cell antigens Rho(D), (c), (E), and Fya. Nature (London) 295: 529–531.CrossRefGoogle Scholar
  318. 319.
    Morgan, T., J. Meyers, and W. Fitzgibbon. 1981. Sodium intake, blood pressure, and red cell sodium efflux. Clin. Exp. Hypertens. 3: 641–654.PubMedCrossRefGoogle Scholar
  319. 320.
    Morrow, J. S. 1982. Structure of the erythrocyte cytoskeleton: Workshop report. In: Differentiation and Function of Hematopoietic Cell Surfaces. V. T. Marchesi and R. C. Gallo, eds. Liss, New York. pp. 193–196.Google Scholar
  320. 321.
    Morrow, J. S., and V. T. Marchesi. 1981. Self-assembly of spectrin oligomers in vitro: A basis for a dynamic cytoskeleton. J. Cell Biol. 88: 463–468.PubMedCrossRefGoogle Scholar
  321. 322.
    Morrow, J. S., D. W. Speicher, W. J. Knowles, C. J. Hsu, and V. T. Marchesi. 1980. Identification of functional domains of human erythrocyte spectrin. Proc. Natl. Acad. Sci. USA 77: 6592–6596.PubMedCrossRefGoogle Scholar
  322. 323.
    Mueller, T. J., and M. Morrison. 1977. Detection of a variant of protein 3, the major transmembrane protein of the human erythrocyte. J. Biol. Chem. 252: 6573–6576.PubMedGoogle Scholar
  323. 324.
    Mueller, T. J., and M. Morrison. 1981. Glycoconnectin (PAS2), a membrane attachment site for the human erythrocyte cytoskeleton. In: Erythrocyte Membranes: Recent Clinical and Experimental Advances, Volume 2. W. C. Krukenberg, J. W. Eaton, and G. J. Brewer, eds. Liss, New York. pp. 95–112.Google Scholar
  324. 325.
    Müller, M. M., M. Frass, and B. Mamloi. 1979. Metabolism of adenine and adenosine in erythrocytes of patients with myotonic muscular dystrophy. Adv. Exp. Med. Biol. 122A: 183–188.Google Scholar
  325. 326.
    Müller, M. M., R. Kuzmits, M. Frass, and B. Mamoli. 1980. Purine metabolism of erythrocytes in myotonic dystrophy. J. Neurol. 223: 59–66.PubMedCrossRefGoogle Scholar
  326. 327.
    Munro-Faure, A. D., D. M. Hill, and J. Anderson. 1971. Ethnic differences in human blood cell sodium concentration. Nature (London) 231: 457–458.CrossRefGoogle Scholar
  327. 328.
    Murphy, J. R. 1965. Erythrocyte metabolism. VI. Cell shape and the localization of cholesterol in the erythrocyte membrane. J. Lab. Clin. Med. 65: 756–763.PubMedGoogle Scholar
  328. 329.
    Nakao, M., T. Nakao, and S. Yamazoe. 1960. Adenosine triphosphate and the maintenance of shape of the human red cell. Nature (London) 187: 945–946.CrossRefGoogle Scholar
  329. 330.
    Nakashima, K., and E. Beutler. 1979. Erythrocyte cellular and membrane deformability in hereditary spherocytosis. Blood 53: 481–486.PubMedGoogle Scholar
  330. 331.
    Nathan, D. G., and S. B. Shohet. 1970. Erythrocyte ion transport defects and hemolytic anemia: Hydrocytosis and dessicytosis. Semin. Hematol. 7: 381–408.PubMedGoogle Scholar
  331. 332.
    Nerurkar, S. G., and K. K. Gambhir. 1979. Insulin receptor assay in human erythrocytes as an index to insulin sensitivity of body tissues. Clin. Chim. Acta 25: 1672–1673.Google Scholar
  332. 333.
    Nicholson, G. L., S. P. Masouredis, and S. J. Singer. 1971. Quantitative, 2-dimensional ultrastructural distribution of Rh(D) antigenic sites on human erythrocyte membranes. Proc. Natl. Acad. Sci. USA 68: 1416–1420.CrossRefGoogle Scholar
  333. 334.
    Niebroj-Dobosz, I. 1976. Erythrocyte ghosts Na,K-ATPase activity in Duchenne’s muscular dystrophy and myotonia. J. Neurol. 214: 61–69.PubMedCrossRefGoogle Scholar
  334. 335.
    Nigg, E. A., C. Bron, M. Girardet, and R. J. Cherry. 1980. Band 3-glycophorin A association in erythrocyte membranes demonstrated by combining protein diffusion measurements with antibody-induced cross linking. Biochemistry 19: 1887–1893.PubMedCrossRefGoogle Scholar
  335. 336.
    Nigg, E. A., and R. J. Cherry. 1980. Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: Protein rotational diffusion measurements. Proc. Natl. Acad. Sci. USA 77: 4702–4706.PubMedCrossRefGoogle Scholar
  336. 337.
    Noguchi, C. T., and A. N. Schechter. 1981. Review: The intracellular polymerization of sickle hemoglobin and its relevance to sickle cell disease. Blood 58: 1057–1068.PubMedGoogle Scholar
  337. 338.
    Nordland, J. R., C. F. Schmidt, S. N. Dicken, and T. E. Thompson. 1981. Transbilayer distribution of phosphatidylethanolamine in large and small unilamellar vesicles. Biochemistry 20: 3237–3241.CrossRefGoogle Scholar
  338. 339.
    Nozawa, Y., T. Noguchi, H. Iida, H. Fukushima, and Y. Ito. 1974. Erythrocyte membrane in hereditary spherocytosis: Alterations in surface ultrastructure and membrane proteins as inferred by scanning electron microscopy and SDS disc gel electrophoresis. Clin. Chim. Acta 55: 81–85.PubMedCrossRefGoogle Scholar
  339. 340.
    Olefsky, J. M., and G. M. Reaven. 1974. Decreased insulin binding to lymphocytes from diabetic subjects. J. Clin. Invest. 54: 1323–1328.PubMedCrossRefGoogle Scholar
  340. 341.
    Orringer, E. P. 1984. A further characterization of the selective K movements observed in human red blood cells following acetylphenylhydrazine exposure. Am. J. Hematol. 16: 355–366.PubMedCrossRefGoogle Scholar
  341. 342.
    Gulley, M. L., D. W. Ross, C. Feo, and E. P. Orringer. 1982. The effect of cell hydration on the deformability of normal and sickle erythrocytes. Am. J. Hematol. 13: 283–291.PubMedCrossRefGoogle Scholar
  342. 343.
    Orringer, E. P., and J. C. Parker. 1977. Selective increase of potassium permeability in red blood cells exposed to acetylphenylhydrazine. Blood 50: 1013–1021.PubMedGoogle Scholar
  343. 344.
    Oski, F. A., J. L. Naiman, S. F. Blum, H. S. Zarkowsky, J. Whaun, S. B. Shohet, A. Green, and D. G. Nathan. 1969. Congenital hemolytic anemia with high-sodium, low-potassium red cells: Studies of three generations of a family with a new variant. N. Engl. J. Med. 280: 909–916.PubMedCrossRefGoogle Scholar
  344. 345.
    Ostrow, D. G., G. N. Pandey, J. M. Davis, S. W. Hurt, and D. C. Tosteson. 1978. A heritable disorder of lithium transport in erythrocytes of a subpopulation of manic-depressive patients. Am. J. Psychiatry 135: 1070–1078.PubMedGoogle Scholar
  345. 346.
    Palek, J. 1977. Red cell membrane injury in sickle cell anemia. Br. J. Haematol. 35: 1–9.PubMedCrossRefGoogle Scholar
  346. 347.
    Palek, J. 1977. Red cell calcium content and transmembrane calcium movements in sickle cell anemia. J. Lab. Clin. Med. 89: 1365–1374.PubMedGoogle Scholar
  347. 348.
    Palek, J., S. C. Liu, and P. A. Liu. 1978. Spectrin assembly in irreversibly sickled cell membranes: Role of Ca and ATP. In: Biochemical and Clinical Aspects of Hemoglobin Abnormalities. W. S. Caughey, ed. Academic Press, New York. pp. 353–367.Google Scholar
  348. 349.
    Palek, J., S. C. Liu, and P. A. Liu. 1978. Crosslinking of the nearest membrane protein neighbors in ATP depleted, Ca enriched, and irreversibly sickled red cells. In: Erythrocyte Membranes: Recent Clinical and Experimental Advances. W. C. Kmkeberg, J. W. Eaton, and G. J. Brewer, eds. Liss, New York. pp. 75–88.Google Scholar
  349. 350.
    Palek, J., S. Liu, P. Liu, J. Prchal, and R. P. Castleberry. 1981. Altered assembly of spectrin in red cell membranes in hereditary pyropoikilocytosis. Blood 57: 130–139.PubMedGoogle Scholar
  350. 351.
    Pandey, G. N., E. Doris, J. M. Davis, and D. C. Tosteson. 1979. Lithium transport in human red blood cells: Genetic and clinical aspects. Arch. Gen. Psychiatry 36: 902–908.PubMedCrossRefGoogle Scholar
  351. 352.
    Pandey, G. N., D. G. Ostrow, M. Haas, E. Doris, R. C. Casper, J. M. Davis, and D. C. Tosteson. 1977. Abnormal lithium and sodium transport in erythrocytes of a manic-depressive patient and some members of his family. Proc. Natl. Acad. Sci. USA 74: 3607–3611.PubMedCrossRefGoogle Scholar
  352. 353.
    Pandey, G. N., B. Sarkadi, M. Haas, R. B. Gunn, J. M. Davis, and D. C. Tosteson. 1978. Lithium transport pathways in human red blood cells. J. Gen. Physiol. 72: 233–247.PubMedCrossRefGoogle Scholar
  353. 354.
    Parker, J. C. 1978. Sodium and calcium movements in dog red blood cells. J. Gen. Physiol. 71: 1–17.PubMedCrossRefGoogle Scholar
  354. 355.
    Parker, J. C., E. P. Orringer, and T. J. McManus. 1978. Disorders of ion transport in red blood cells. In: Physiology of Membrane Disorders. T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds. Plenum Press, New York. pp. 773–800.CrossRefGoogle Scholar
  355. 356.
    Patel, V. P., and G. Fairbanks. 1981. Spectrin phosphorylation and shape change of human erythrocyte ghosts. J. Cell Biol. 88: 430–440.PubMedCrossRefGoogle Scholar
  356. 357.
    Pearson, T. W. 1978. Na,K-ATPase of Duchenne muscular dystrophy erythrocyte ghosts. Life Sci. 22: 127–132.PubMedCrossRefGoogle Scholar
  357. 358.
    Pearcy, A. K., and M. E. Miller. 1975. Reduced deformability of erythrocyte membranes from patients with Duchenne muscular dystrophy. Nature (London) 258: 147–148.CrossRefGoogle Scholar
  358. 359.
    Perutz, M., and J. M. Mitchison. 1950. State of haemoglobin in sickle cell anaemia. Nature (London) 166: 677–680.CrossRefGoogle Scholar
  359. 360.
    Peter, J. B., M. Worsfold, and C. M. Pearson. 1969. Erythrocyte ghost ATPase in Duchenne dystrophy. J. Lab. Clin. Med. 74: 103–108.PubMedGoogle Scholar
  360. 361.
    Pettegrew, J. W., T. Glonek, and R. M. Stewart. 1979. Phosphorus-31 nuclear magnetic resonance studies in blood in Huntington’s disease. Trans. Am. Neurol. Assoc. 104: 233–235.PubMedGoogle Scholar
  361. 362.
    Pettegrew, J. W., J. S. Nichols, and R. M. Stewart. 1980. Membrane studies in Huntington’s disease: Steady state fluorescence studies of intact erythrocytes. Ann. Neurol. 8: 381–386.PubMedCrossRefGoogle Scholar
  362. 363.
    Pickard, N. A., H. D. Gruemer, H. L. Verrill, E. R. Isaacs, M. Robinow, W. E. Nance, E. C. Myers, and B. Goldsmith. 1978. Systemic membrane defect in the proximal muscular dystrophies. N. Engl. J. Med. 299: 841–846.PubMedCrossRefGoogle Scholar
  363. 364.
    Plapp, F. V., J. P. Evans, and L. L. Tilzer. 1981. Detection of Rho(D) antigen on the inner surface of Rh negative erythrocyte membranes. Fed. Proc. 40: 208.Google Scholar
  364. 365.
    Platt, O. S., S. E. Lux, and D. G. Nathan. 1981. Exercise-induced hemolysis in xerocytosis: Erythrocyte dehydration and shear sensitivity. J. Clin. Invest. 68: 631–638.PubMedCrossRefGoogle Scholar
  365. 366.
    Plishker, G. A. and S. H. Appel. 1980. Red blood cell alterations in muscular dystrophy: The role of lipids. Muscle Nerve 3: 70–81.PubMedCrossRefGoogle Scholar
  366. 367.
    Plishker, G. A., H. J. Gitelman, and S. H. Appel. 1978. Myotonic muscular dystrophy: Altered calcium transport in erythrocytes. Science 200: 323–325.PubMedCrossRefGoogle Scholar
  367. 368.
    Postnov, Y. U., S. Orlov, P. Gulak, and A. Shevchenko. 1976. Altered permeability of the erythrocyte membrane for sodium and potassium ions in spontaneously hypertensive rats Pfluegers Arch. 365: 257–264.Google Scholar
  368. 369.
    Postnov, Y. U., S. N. Orlov, and N. I. Pokudin. 1979. Decrease of calcium binding by the red blood cell membrane in spontaneously hypertensive rats and in essential hypertension. Pfluegers Arch 379: 191–195.CrossRefGoogle Scholar
  369. 370.
    Postnov, Y. U., S. N. Orlov, A. Shevchenko, and A. M. Adler. 1977. Altered sodium permeability, calcium binding, and Na,KATPase activity in the red cell membrane in essential hypertension. Pfluegers Arch. 371: 263–269.CrossRefGoogle Scholar
  370. 371.
    Poston, L., R. B. Sewell, S. P. Wilkinson, P. J. Richardson, R. Williams, E. M. Clarkson, G. A. MacGregor, and H. E. de Wardener. 1981. Evidence for a circulating sodium transport inhibitor in essential hypertension. Br. Med. J. 282: 847–849.CrossRefGoogle Scholar
  371. 372.
    Probstfield, J. L., Y. Wang, and A. L. From. 1972. Cation transport in Duchenne muscular dystrophy erythrocytes. Proc. Soc. Exp. Biol. Med. 141: 479–481.PubMedGoogle Scholar
  372. 373.
    Reed, C. F., and S. N. Swisher. 1966. Erythrocyte lipid loss in hereditary spherocytosis. J. Clin. Invest. 45: 777–781.PubMedCrossRefGoogle Scholar
  373. 374.
    Robinson, T. J., J. A. Archer, K. K. Gambhir, V. W. Hollis, L. Carter, and C. Bradley. 1979. Erythrocytes: A new cell type for the evaluation of insulin receptor defects in diabetic humans. Science 205: 200–202.PubMedCrossRefGoogle Scholar
  374. 375.
    Rogausch, H. 1978. Influence of Ca on red cell deformability and adaptation to sphering agents. Pfluegers Arch. 373: 43–47.CrossRefGoogle Scholar
  375. 376.
    Rosa, R. M., B. E. Bierer, R. Thomas, J. S. Stoff, M. Kruskall, S. Robinson, H. F. Bunn, and F. H. Epstein. 1980. A study of induced hyponatremia in the prevention and treatment of sickle cell crisis. N. Engl. J. Med. 303: 1138–1143.PubMedCrossRefGoogle Scholar
  376. 377.
    Roses, A. D., and S. H. Appel. 1973. Protein kinase activity in erythrocyte ghosts of patients with myotonic muscular dystrophy. Proc. Natl. Acad. Sci. USA 70: 1855–1859.PubMedCrossRefGoogle Scholar
  377. 378.
    Roses, A. D., and S. H. Appel. 1974. Muscle membrane protein kinase in myotonic muscular dystrophy. Nature (London) 250: 245–247.CrossRefGoogle Scholar
  378. 379.
    Roses, A. D., and S. H. Appel. 1975. Phosphorylation of component a of the erythrocyte membrane in myotonic muscular dystrophy. J. Membr. Biol. 20: 51–58.PubMedCrossRefGoogle Scholar
  379. 380.
    Roses, A. D., and S. H. Appel. 1978. Inherited membrane disorders of muscle: Duchenne muscular dystrophy and myotonic muscular dystrophy. In: Physiology of Membrane Disorders. T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds. Plenum Press, New York pp. 801–815.CrossRefGoogle Scholar
  380. 381.
    Roses, A. D., S. H. Appel, D. A. Butterfield, S. E. Miller, and D. B. Chestnut. 1975. Specificity of biochemical and biophysical tests in Duchenne and myotonic muscular dystrophy, carrier states, and congenital myotonia. Trans. Am. Neurol. Assoc. 100: 131–134.PubMedGoogle Scholar
  381. 382.
    Roses, A. D., D. A. Butterfield, S. H. Appel, and D. B. Chestnut. 1975. Phenytoin and membrane fluidity in myotonic dystrophy. Arch. Neurol. 32: 535–538.PubMedCrossRefGoogle Scholar
  382. 383.
    Roses, A. D., G. B. Hartwig, M. Mabry, Y. Nagano, and S. E. Miller. 1980. Red blood cell and fibroblast membranes in Duchenne and myotonic muscular dystrophy. Muscle Nerve 3: 36–54.PubMedCrossRefGoogle Scholar
  383. 384.
    Roses, A. D., M. H. Herbstreith, and S. H. Appel. 1975. Membrane protein kinase alteration in Duchenne muscular dystrophy. Nature (London) 254: 350–351.CrossRefGoogle Scholar
  384. 385.
    Roses, A. D., M. J. Roses, S. E. Miller, K. L. Hull, and S. H. Appel. 1976. Carrier detection in Duchenne muscular dystrophy. N. Engl. J. Med. 294: 193–198.PubMedCrossRefGoogle Scholar
  385. 386.
    Rothman, J. E., and J. Lenard. 1977. Membrane asymmetry. Science 195: 743–753.PubMedCrossRefGoogle Scholar
  386. 387.
    Rowland, L. P. 1976. Pathogenesis of muscular dystrophies. Arch. Neurol. 33: 315–321.PubMedCrossRefGoogle Scholar
  387. 388.
    Rowland, L. P. 1980. Biochemistry of muscle membranes in Duchenne muscular dystrophy. Muscle Nerve 3: 3–20.PubMedCrossRefGoogle Scholar
  388. 389.
    Ruitenbeek, W. 1979. Membrane-bound enzymes of erythrocytes in human muscular dystrophy. J. Neurol. Sci. 41: 71–80.PubMedCrossRefGoogle Scholar
  389. 390.
    Rybakowski, J. 1977. Pharmacogenetic aspects of red blood cell lithium index in manic-depressive psychosis. Biol. Psychiatry 12: 425–429.PubMedGoogle Scholar
  390. 391.
    Rybakowski, J., M. Chlopocka, Z. Kapelski, B. Hernacka, Z. Szajnerman, and K. Kasprazak. 1974. Red blood cell lithium index in patients with affective disorders in the course of lithium prophylaxis. Int. Pharmakopsychiatry 9: 116–171.Google Scholar
  391. 392.
    Rybakowski, J., and W. Strzyzewski. 1976. Red blood cell lithium index and long term maintenance treatment. Lancet 1: 1408–1409.PubMedCrossRefGoogle Scholar
  392. 393.
    Rygielski, D. B., D. L. Kropp, and W. N. Duran. 1981. Hypertension and the Na-K pump. Fed. Proc. 40: 611a.Google Scholar
  393. 394.
    Sachs, J. R. 1971. Ouabain-insensitive sodium movements in the human red blood cell. J. Gen. Physiol. 57: 259–282.PubMedCrossRefGoogle Scholar
  394. 395.
    Salhany, J. M., and N. Shaklai. 1979. Functional properties of human hemoglobin bound to the erythrocyte membrane. Biochemistry 18: 893–899.PubMedCrossRefGoogle Scholar
  395. 396.
    Sarkadi, B. 1980. Active calcium transport in human red cells. Biochim. Biophys. Acta 604: 159–190.PubMedCrossRefGoogle Scholar
  396. 397.
    Sarkadi, B., J. K. Allimoff, R. B. Gunn, and D. C. Tosteson. 1978. Kinetics and stoichiometry of Na-dependent Li transport in human red blood cells. J. Gen. Physiol. 72: 249–265.PubMedCrossRefGoogle Scholar
  397. 398.
    Sato, B., K. Nishikida, L. T. Samuels, and F. H. Tyler. 1978. Electron spin resonance studies of erythrocytes from patients with Duchenne muscular dystrophy. J. Clin. Invest. 61: 251–259.PubMedCrossRefGoogle Scholar
  398. 399.
    Sauberman, N., G. Fairbanks, H. U. Lutz, N. L. Fortier, and L. M. Snyder. 1981. Altered red blood cell surface area in hereditary xerocytosis. Clin. Chim Acta 114: 149–161.PubMedCrossRefGoogle Scholar
  399. 400.
    Sauberman, N., N. L. Fortier, G. Fairbanks, R. J. O’Connor, and L. M. Snyder. 1979. Red cell membrane in hemolytic disease: Studies of variables affecting electrophoretic analysis. Biochim. Biophys. Acta 556: 292–313.PubMedCrossRefGoogle Scholar
  400. 401.
    Schartum-Hansen, H. 1935. Die Genese der Ovalocyten. Acta Med. Scand. 86: 348–360.Google Scholar
  401. 402.
    Schmalsteig, F. C., A. S. Goldman, G. C. Mills, T. M. Monahan, J. A. Nelson, and R. M. Goldblum. 1976. Nucleoside metabolism in adenosine deaminase deficiency. Pediatr. Res. 10: 393.Google Scholar
  402. 403.
    Schmidt, P. G., L. D. Nelson, A. L. Mark, D. D. Heistad, and F. M. Abboud. 1974. Inhibition of adrenergic vasoconstriction by quinidine. J. Pharmacol. Exp. Ther. 188: 124–143.Google Scholar
  403. 404.
    Schmitt, J., R. Royer, C. Schmidt, and R. Mucka. 1976. Approche, nosographie des myopathies hereditaires: Essai de classification et de diagnostic par les cholinesterases globulaires et les pseudocholinesterases seriques. Rev. Neurol. 132: 481–487.PubMedGoogle Scholar
  404. 405.
    Schroeder, E. 1968. Relationship between plasma renin, plasma sodium, and erythrocyte sodium in healthy persons and hypertensives. Ger. Med. Mon. 13: 384–389.Google Scholar
  405. 406.
    Schroter, W., and K. Ungefahr. 1976. Studies on the cation transport in high sodium and low potassium red cells in hereditary hemolytic anemia associated with stomatocytosis. In: Membranes and Disease. L. Bolis, J. F. Hoffman, and A. Leaf, eds. Raven Press, pp. 95–98.Google Scholar
  406. 407.
    Serjeant, G. R. 1975. Fetal haemoglobin in homozygous sickle cell disease. Clin. Haematol. 4: 109–122.PubMedGoogle Scholar
  407. 408.
    Serjeant, G. R., B. Serjeant, and P. F. A. Milner. 1969. The irreversibly sickled cell: A determinant of haemolysis in sickle cell anemia. Br. J. Haematol. 17: 527–533.PubMedCrossRefGoogle Scholar
  408. 409.
    Sha’afri, R. I., S. B. Rodan, R. L. Hinz, S. M. Fernandez, and G. A. Rodan. 1975. Abnormalities in membrane microviscosity and ion transport in genetic muscular dystrophy. Nature (London) 254: 525–526.CrossRefGoogle Scholar
  409. 410.
    Shaklai, N., V. S. Sharma, and H. M. Ranney. 1981. Interaction of sickle cell hemoglobin with erythrocyte membranes. Proc. Natl. Acad. Sci. USA 78: 65–68.PubMedCrossRefGoogle Scholar
  410. 411.
    Sheehy, R., and G. B. Ralston. 1978. Abnormal binding of spectrip to the membrane of erythrocytes in some cases of hereditary spherocytosis. Blut 36: 145–148.PubMedCrossRefGoogle Scholar
  411. 412.
    Sheetz, M. P., M. Schindler, and D. E. Koppel. 1980. Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature (London) 285: 510–512.CrossRefGoogle Scholar
  412. 413.
    Sheetz, M. P., and S. J. Singer. 1974. Biological membranes as bilayer couples: A molecular mechanism of drug-erythrocyte interaction. Proc. Natl. Acad. Sci. USA 71: 4457–4461.PubMedCrossRefGoogle Scholar
  413. 414.
    Shohet, S. B. 1979. Reconstitution of spectrin-deficient spherocytic mouse erythrocyte membranes. J. Clin. Invest. 64: 483–494.PubMedCrossRefGoogle Scholar
  414. 415.
    Shohet, S. B., D. G. Nathan, B. M. Livermore, S. A. Feif, and E. R. Jaffe. 1973. Hereditary hemolytic anemia associated with abnormal membrane lipid. II. Ion permeability and transport abnormalities. Blood 42: 1–8.PubMedGoogle Scholar
  415. 416.
    Shotton, D. M., B. E. Burke, and D. Branton. 1979. The molecular structure of human erythrocyte spectrin: Biophysical and electron microscopic studies. J. Mol. Biol. 131: 303–329.PubMedCrossRefGoogle Scholar
  416. 417.
    Singer, S. J., and G. L. Nicholson. 1972. The fluid mosaic model of the structure of cell membranes. Science 175: 720–731.PubMedCrossRefGoogle Scholar
  417. 418.
    Smith, J. A., F. V. Lucas, A. P. Martin, D. A. Senhauser, and M. L. Vorbeck. 1973. Lipid-protein interactions of erythrocyte membranes: Comparison of normal O, Rh(D) positive with the rare O, Rh null. Biochem. Biophys. Res. Commun. 54: 1015–1023.PubMedCrossRefGoogle Scholar
  418. 419.
    Smith, J. A., and A. J. Sinclair. 1977. Rh O and the erythrocyte membrane. Blood 49: 491–492.PubMedGoogle Scholar
  419. 420.
    Snyder, L. M., H. U. Lutz, N. Sauberman, J. Jacobs, and N. L. Fortier. 1978. Fragmentation and myelin formation in hereditary xerocytosis and other hemolytic anemias. Blood 52: 750–761.PubMedGoogle Scholar
  420. 421.
    Solomons, C. C., S. P. Ringel, E. I. Nwuke, and H. Suga. 1977. Abnormal adenine metabolism of erythrocytes in Duchenne and myotonic muscular dystrophy. Nature (London) 268: 55–56.CrossRefGoogle Scholar
  421. 422.
    Souweine, G., J. C. Bernard, Y. Lasna, and J. Lachanat. 1978. The sodium pump of erythrocytes from patients with Duchenne muscular dystrophy: Effect of ouabain on the active sodium flux and on Na,K-ATPase. J. Neurol. 217: 287–294.PubMedCrossRefGoogle Scholar
  422. 423.
    Steck, T. L. 1974. The organization of proteins in the human red cell membrane. J. Cell Biol. 62: 1–19.PubMedCrossRefGoogle Scholar
  423. 424.
    Steinberg, M. H., J. W. Eaton, E. Berger, M. B. Coleman, and F. J. Oelshlegel. 1978. Erythrocyte calcium abnormalities and the clinical severity of sickling disorders. Br. J. Haematol. 40: 533–539.PubMedCrossRefGoogle Scholar
  424. 425.
    Sturgeon, P. 1970. Hematological observations in the anemia associated with blood type Rh null. Blood 36: 310–320.PubMedGoogle Scholar
  425. 426.
    Swarts, H. G. P., S. L. Bonting, J. J. DePont, F. S. Steckhoven, T. A. Thien, and A. V. Laar. 1981. Cation fluxes and Na,Kactivated ATPase activity in erythrocytes of patients with essential hypertension. Hypertension 3: 641–649.PubMedGoogle Scholar
  426. 427.
    Symmans, W. A., C. S. Shepard, W. L. Marsh, R. Oyen, S. B. Shohet, and B. J. Linehan. 1979. Hereditary acanthocytosis associated with the McLeod phenotype of the Kell blood group system. Br. J. Haematol. 42: 575–583.PubMedCrossRefGoogle Scholar
  427. 428.
    Szentistvanyi, I., Z. Janka, and L. Heiner. 1980. Calcium-dependent potassium transport in progressive muscular dystrophy. Eur. Neurol. 19: 39–42.PubMedCrossRefGoogle Scholar
  428. 429.
    Szibor, R., K. Redmann, H. Deike, and K. Muller. 1976. Der Einfluss von Ouabain auf die elektrophoretische Beweglichkeit der Erythrozyten bei 7 Patienten mit progressiver Muskeldystrophie typ Duchenne. Hely. Paediatr. Acta 31: 249–256.Google Scholar
  429. 430.
    Szibor, R., V. Steinbicker, K. Redmann, and E. Heuse. 1979. Lyon phenomenon in ouabain treated erythrocytes of Duchenne muscular dystrophy carriers as revealed by cell electrophoresis. Clin. Genet. 25: 475–479.Google Scholar
  430. 431.
    Tang, L. L., C. M. Redman, D. Williams, and W. L. Marsh. 1976. Biochemical studies on McLeod phenotype erythrocytes. Biochem. J. 153: 271–277.Google Scholar
  431. 432.
    Tanner, M. J. A., and D. J. Anstee. 1976. The membrane change in En(a-) human erythrocytes. Biochem. J. 153: 271–277.PubMedGoogle Scholar
  432. 433.
    Tanner, M. J. A., R. E. Jenkins, D. J. Anstee, and J. R. Clamp. 1976. Abnormal carbohydrate composition of the major penetrating membrane protein of En(a) human erythrocytes. Biochem. J. 155: 701–703.PubMedGoogle Scholar
  433. 434.
    Tchemia, G., N. Mohandas, and S. B. Shohet. 1981. Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis: Implications for erythrocyte membrane stability. J. Clin. Invest. 68: 454–460.CrossRefGoogle Scholar
  434. 435.
    Thomas, N. S. T., and P. S. Harper. 1978. Myotonic dystrophy: Studies of the lipid composition and metabolism of erythrocytes and skin fibroblasts. Clin. Chim. Acta 83: 13–23.PubMedCrossRefGoogle Scholar
  435. 436.
    Thomas, R. D., R. P. S. Edmonson, P. J. Hilton, and N. F. Jones. 1975. Abnormal sodium transport in leukocytes from patients with essential hypertension and the effect of treatment. Clin. Sci. Mol. Med. 48: 169s - 170s.Google Scholar
  436. 437.
    Thompson, S., and A. H. Maddy. 1981. The abnormal phosphorylation of spectrin in human hereditary spherocytosis. Biochim. Biophys. Acta 649: 31–37.PubMedCrossRefGoogle Scholar
  437. 438.
    Thompson, S., and A. H. Maddy. 1981. The molecular basis of the defect in phosphorylation of spectrin in human hereditary spherocytosis. Biochim. Biophys. Acta 649: 38–44.PubMedCrossRefGoogle Scholar
  438. 439.
    Tokunaga, E., S. Sasakawa, K. Tanaka, H. Kawamata, C. M. Giles, E. W. Iken, J. Poole, D. J. Anstee, W. Mawby, and M. J. A. Tanner. 1979. Two apparently healthy Japanese individuals of type MkMk have erythrocytes which lack both the blood group MN and Ss active sialoglycoproteins. J. Immunogenet. 6: 383–390.PubMedCrossRefGoogle Scholar
  439. 440.
    Tomita, M., H. Furthmayer, and V. T. Marchesi. 1978. Primary structure of glycophorin A: Isolation and characterization of peptides and complete amino acid sequence. Biochemistry 17: 4756–4770.PubMedCrossRefGoogle Scholar
  440. 441.
    Tosteson, D. C. 1981. Cation countertransport and cotransport in human red cells. Fed. Proc. 40: 1429–1433.PubMedGoogle Scholar
  441. 442.
    Tosteson, D. C. 1981. Lithium and mania. Sci. Am. 244: 164–174.PubMedCrossRefGoogle Scholar
  442. 443.
    Tosteson, D. C., N. Adragna, I. Bize, H. Solomon, and M. Canessa. Membranesions, and hypertension. Clin. Sci. 61: 5–10.Google Scholar
  443. 444.
    Tosteson, D. C., E. Carlsen, and E. T. Dunham. 1952. The effects of sickling on ion transport. J. Clin. Invest. 31: 406–411.PubMedCrossRefGoogle Scholar
  444. 445.
    Trevisan, M., R. Cooper, D. Ostrow, W. Miller, S. Sparks, Y. Leonas, A. Allen, M. Steinhauer, and J. Stamler. 1981. Dietary sodium, erythrocyte sodium concentration, sodium-stimulated lithium efflux, and blood pressure. Clin. Sci. 61: 29s - 32s.PubMedGoogle Scholar
  445. 446.
    Tsai, I.-H., S. N. Prasanna-Murthy, and T. L. Steck. 1982. Effect of red cell membrane binding on the catalytic activity of glyceraldehyde-3-phosphate dehydrogenase. J. Biol. Chem. 257: 1438–1442.PubMedGoogle Scholar
  446. 447.
    Tsung, P., and J. Palek. 1980. Red cell membrane protein phosphorylation in hemolytic anemias and muscular dystrophies. Muscle Nerve 3: 55–69.PubMedCrossRefGoogle Scholar
  447. 448.
    Tuck, M. L., R. P. Garay, and P. Meyer. 1982. Identification of the Na-K cotransport system in vascular smooth muscle cells: Effects of catecholamines on cation transport. Clin. Res. 30: 340A.Google Scholar
  448. 449.
    Tyler, J. M., B. N. Reinhardt, and D. Branton. 1980. Associations of erythrocyte membrane proteins: Binding of purified bands 2.1 and 4.1 to spectrin. J. Biol. Chem. 255: 7034–7039.PubMedGoogle Scholar
  449. 450.
    Urry, D. W., T. L. Trapane, K. S. Andrews, M. M. Long, H. W. Overbeck, and S. Oparil. 1980. NMR observation of altered sodium interaction with human erythrocyte membranes of essential hypertensives. Biochem. Biophys. Res. Commun. 96: 514–521.PubMedCrossRefGoogle Scholar
  450. 451.
    Valentine, W. N. 1977. The molecular lesion of hereditary spherocytosis. Blood 49: 241–245.PubMedGoogle Scholar
  451. 452.
    Valentine, W. N., D. E. Paglia, and E. Beutler. 1980. The primary cause of hemolysis in enzymopathies of anaerobic glycolysis: A viewpoint and a commmentary. Blood Cells 6: 819–829.PubMedGoogle Scholar
  452. 453.
    Valentine, W. N., D. E. Paglia, and F. Gilsanz. 1977. Hereditary hemolytic anemia with increased red cell adenosine deaminase (45 to 70 fold) and decreased adenosine triphosphate. Science 195: 783–785.PubMedCrossRefGoogle Scholar
  453. 454.
    Van Deenen, L. L. M. 1979. Structural organization and dynamics of phospholipids in red cell membranes. In: Normal and Abnormal Red Cell Membranes. S. E. Lux, V. T. Marcheso. amd C. F. Fox, eds. Liss, New York. 451–456.Google Scholar
  454. 455.
    Van Meer, G., C. G. Gahmberg, J. A. F. Op den Kamp, and L. L. M. van Deenen. 1981. Phospholipid distribution in human En(a) red cell membranes which lack the major sialoglycoprotein, glycophorin A. FEBS Leu. 135: 53–55.CrossRefGoogle Scholar
  455. 456.
    Vickers, J. D., A. J. McComas, and M. P. Rathbone. 1978. Alterations of membrane phosphorylation in erythrocyte membranes from patients with Duchenne muscular dystrophy. Can. J. Neurol. Sci. 5: 437–442.PubMedGoogle Scholar
  456. 457.
    Victoria, E. J., L. C. Mahan, and S. P. Masouredis. 1981. AntiRho(d) binds to band 3 glycoprotein of the human erythrocyte membrane. Proc. Natl. Acad. Sci. USA 78: 2898–2902.PubMedCrossRefGoogle Scholar
  457. 458.
    Victoria, E. J., E. A. Muchmore, E. J. Sudora, and S. Masouredis. 1975. The role of antigen mobility in anti-Rho(D)-induced agglutination. J. Clin. Invest. 56: 292–301.PubMedCrossRefGoogle Scholar
  458. 459.
    Wachslicht-Rodbard, H., H. A. Gross, D. Rodbard, M. H. Ebert, and J. Roth. 1979. Increased insulin binding to erythrocytes in anorexia nervosa: Restoration to normal with refeeding. N. Engl. J. Med. 300: 882–887.PubMedCrossRefGoogle Scholar
  459. 460.
    Wakayama, Y., A. Hodson, E. Bunilla, D. Pleasure, and D. L. Schotland. 1979. Freeze-fracture studies of erythrocyte plasma membrane in human neuromuscular diseases. Neurology 29: 670–675.PubMedGoogle Scholar
  460. 461.
    Walter, U., and A. Distler. 1980. Effects of ouabain and furosemide on ATPase activity and sodium transport in erythrocytes of normotensives and of patients with essential hypertension. In: Intracellular Electrolytes and Arterial Hypertension. H. Zumkley and H. Losse, eds. Thieme, Stuttgart. pp. 170–181.Google Scholar
  461. 462.
    Walter, U., and A. Distler. 1982. Abnormal sodium efflux in erythrocytes of patients with essential hypertension. Hypertension 4: 205–210.PubMedGoogle Scholar
  462. 463.
    Wambach, G., and A. Helber. 1981. Na,K-ATPase in erythrocyte ghosts is not a marker for primary hypertension. Clin. Exp. Hyper-tens. 3: 663–674.CrossRefGoogle Scholar
  463. 464.
    Wambach, G., A. Helber, G. Bonner, and W. Hummerich. 1978. Natrium-kalium-ATPase-aktivitat in Erythrozytenghost und Elektrolytkonzentration in erythrozyten von Patienten mit essentieller Hypertonie. Verh. Dtsch. Ges. Inn. Med. 84: 800–805.PubMedGoogle Scholar
  464. 465.
    Wambach, G., A. Helber, G. Bonner, and W. Hummereich. 1979. Natrium-kalium ATPase aktivitat in Erythrozytenghosts von Patienten mit essentieller Hypertonie. Klin. Wochenschr. 57: 169–172.PubMedCrossRefGoogle Scholar
  465. 466.
    Wambach, G., A. Helber, G. Bonner, W. Hummereich, A. Konrads, and W. Kauffman. 1980. Sodium-potassium ATPase activity in erythrocyte ghosts of patients with primary and secondary hypertension. Clin. Sci. 59: 183s - 185s.PubMedGoogle Scholar
  466. 467.
    Waymouth, C. 1973. Erythrocyte sodium and potassium levels in normal and anemic mice. Comp. Biochem. Physiol. A 44: 75 1766.Google Scholar
  467. 468.
    Weinstein, R. S., J. K. Khodad, and T. L. Steck. 1980. The band 3 protein intramembrane particle of the human red blood cell. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Us-sing, and J. O. Wieth, eds. Munksgaard, Copenhagen. pp. 35–50.Google Scholar
  468. 469.
    Weller, J. M. 1959. The acid-base balance and sodium distribution of the blood in essential hypertension. J. Lab. Clin. Med. 53: 553–556.PubMedGoogle Scholar
  469. 470.
    Wessels, F., G. Junge-Hülsing, and H. Losse. 1967. Untersuchungen zur Natriumpermeabilität der Erythrozyten bei hypertonikem und normotonikern mit familiarer Hochdruckbelastung. Z. Kreislaufforsch. 56: 374–389.Google Scholar
  470. 471.
    Wessels, F., and H. Losse. 1967. Beziehungen zwischen natriumstoffwechsel der Erythrozyten und Gefassreagibilitat bei normotonikem mit familiarer Hochdruckbelastung. Klin. Wochenschr. 45: 850–852.PubMedCrossRefGoogle Scholar
  471. 472.
    Wessels, F., H. Zumkley, and H. Losse. 1970. Untersuchungen zur Frage des zusammenhangs zwischen kationenpermeabilitat der Erythrozyten and Hochdruckdisposition. Z. Kreislaufforsch. 59: 415–426.PubMedGoogle Scholar
  472. 473.
    White, W., E. D. Washington, B. H. Sabo, M. Stroup, J. McCreary, R. Oyen, and W. L. Marsh. 1980. Anti-Km in a transfused man with the McLeod syndrome. Blood Transfusion Immunohematol. 23: 305–317.CrossRefGoogle Scholar
  473. 474.
    Wieth, J. O., and J. Brahm. 1980. Kinetics of bicarbonate exchange in human red cells: Physiological implications. In: Membrane Transport in Erythrocytes. U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds. Munksgaard, Copenhagen. pp. 467–487.Google Scholar
  474. 475.
    Wiley, J. S. 1970. Red cell survival studies in hereditary spherocytosis. J. Clin. Invest. 49: 666–672.PubMedCrossRefGoogle Scholar
  475. 476.
    Wiley, J. S. 1972. Coordinated increase of sodium leak and sodium pump in hereditary spherocytosis. Br. J. Haematol. 22: 529–542.PubMedCrossRefGoogle Scholar
  476. 477.
    Wiley, J. S. 1977. Genetic abnormalities of cation transport in the human erythrocyte. In: Membrane Transport in Red Cells. J. C. Ellory and V. L. Lew, eds. Academic Press, New York. pp. 337–361.Google Scholar
  477. 478.
    Wiley, J. S. 1978. Cation fluxes in Rh null red cells. Blood 51: 555–556.PubMedGoogle Scholar
  478. 479.
    Wiley, J. S. 1981. Increased cation permeability in thalassemia and conditions of marrow stress. J. Clin. Invest. 67: 1094–1102.CrossRefGoogle Scholar
  479. 480.
    Wiley, J. S., and R. A. Cooper. 1974. A furosemide-sensitive cotransport of sodium plus potassium in the human red blood cell. J. Clin. Invest. 53: 745–755.PubMedCrossRefGoogle Scholar
  480. 481.
    Wiley, J. S., R. A. Cooper, K. Adachi, and T. Asakura. 1979. Hereditary stomatocytosis: Association of low, 2,3-diphosphoglycerate with increased cation pumping by the red cell. Br. J. Haematol. 41: 133–141.PubMedCrossRefGoogle Scholar
  481. 482.
    Wiley, J. S., J. C. Ellory, M. A. Shumann, C. C. Shaller, and R. A. Cooper. 1975. Characteristics of the membrane defect in the hereditary stomatocytosis syndrome. Blood 46: 337–354.PubMedGoogle Scholar
  482. 483.
    Wiley, J. S., and F. M. Gill. 1976. Red cell calcium leak in congenital hemolytic anemia with extreme microcytosis. Blood 47: 197–210.PubMedGoogle Scholar
  483. 484.
    Wiley, J. S., J. S. Hutchinson, F. Mendelsohn, and A. E. Doyle. 1980. Increased sodium permeability of erythrocytes in spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 7: 527–530.PubMedCrossRefGoogle Scholar
  484. 485.
    Wilkerson, L. S., R. C. Perkins, R. Roelofs, L. Swift, L. R. Dalton, and J. H. Park. 1978. Erythrocyte membrane abnormalities in Duchenne muscular dystrophy monitored by saturation transfer electron paramagnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA 75: 838–841.PubMedCrossRefGoogle Scholar
  485. 487.
    Wilschut, J., and D. Papahadapoulos. 1979. Ca-induced fusion of phospholipid vesicle monitored by mixing of aqueous content. Nature (London) 281: 690–692.CrossRefGoogle Scholar
  486. 488.
    Wolfe, L. C., and S. E. Lux. 1978. Membrane protein phosphorylation of intact normal and hereditary spherocytic erythrocytes. J. Biol. Chem. 253: 3336–3342.PubMedGoogle Scholar
  487. 489.
    Wong, P., and A. D. Roses. 1979. Isolation of an abnormally phosphorylated erythrocyte membrane band 3 glycoprotein from patients with myotonic muscular dystrophy. J. Membr. Biol. 45: 147–166.PubMedCrossRefGoogle Scholar
  488. 490.
    Woods, J. W., R. J. Falk, A. W. Pittman, P. J. Klemmer, B. S. Watson, and K. Namboodiri. 1982. Increased red cell sodium-lithium countertransport in normotensive sons of hypertensive parents. N. Engl. J. Med. 306: 593–595.PubMedCrossRefGoogle Scholar
  489. 491.
    Woods, K. L., D. G. Beevers, and M. West. 1981. Familial abnormality of erythrocyte cation transport in essential hypertension. Br. Med. J. 282: 1186–1188.CrossRefGoogle Scholar
  490. 492.
    Woods, K. L., D. G. Beevers, and M. J. West. 1981. Racial differences in red cell cation transport and their relationship to experimental hypertension. Clin. Exp. Hypertens. 3: 655–662.PubMedCrossRefGoogle Scholar
  491. 493.
    Yu, J., D. A. Fischman, and T. L. Steck. 1973. Selective solubilization of proteins and phospholipids from red cell membrane by nonionic detergents. J. Supramol. Struct. 1: 233–248.PubMedCrossRefGoogle Scholar
  492. 494.
    Yu, J., and T. L. Steck., 1975. Associations of band 3, the predominant polypeptide of the human erythrocyte membrane. J. Biol. Chem. 250: 9176–9184.Google Scholar
  493. 495.
    Zail, S. S. 1977. The erythrocyte membrane abnormality of hereditary spherocytosis. Br. J. Haematol. 37: 305–310.PubMedCrossRefGoogle Scholar
  494. 496.
    Zail, S. S., and A. Pickering. 1979. Fatty acid composition in hereditary spherocytosis. Br. J. Haematol. 42: 399–402.PubMedCrossRefGoogle Scholar
  495. 497.
    Zail, S. S., and K. Van den Hoek. 1976. Studies on calcium transport and calcium-dependent adenosine triphosphatase activity of erythrocyte membranes in hereditary spherocytosis. Br. J. Haematol. 34: 605–611.PubMedCrossRefGoogle Scholar
  496. 498.
    Zanella, A., C. Izzo, G. Meola, M. Mariari, M. T. Colotti, V. Silani, G. Pellegara, and G. Scarlato. 1980. Metabolic impairment and membrane abnormality in red cells from Huntington’s disease. J. Neurol. Sci. 47: 93–103.PubMedCrossRefGoogle Scholar
  497. 499.
    Zarkowsky, H. S. 1979. Heat-induced erythrocyte fragmentation in neonatal elliptocytosis. Br. J. Haematol. 41: 515–518.PubMedCrossRefGoogle Scholar
  498. 500.
    Zarkowsky, H. S., and R. M. Hochmuth. 1979. Sickling times of individual erythrocytes at zero PO2. J. Clin. Invest. 56: 1023–1034.CrossRefGoogle Scholar
  499. 501.
    Zarkowsky, H. S., N. Mohandas, C. B. Soeaker, and S. B. Shohet. 1975. A congenital hemolytic anemia with thermal sensitivity of the erythrocyte membrane. Br. J. Haematol. 29: 537–543.PubMedCrossRefGoogle Scholar
  500. 502.
    Zarkowsky, H. S., F. A. Oski, R. Sha’afi, S. B. Shohet, and D. G. Nathan. 1968, Congenital hemolytic anemia with high sodium, low potassium red cells. N. Engl. J. Med. 278: 573–581.PubMedCrossRefGoogle Scholar
  501. R1.
    Anderson, J. M., and J. M. Tyler. 1980. State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membrane. J. Biol. Chem. 255: 1259–1265.PubMedGoogle Scholar
  502. R2.
    Atkinson, A. L., J. S. Morrow, and V. T. Marchesi. 1982. The polymeric state of actin in the human erythrocyte cytoskeleton. J. Cell. Biochem. 18: 493–505.PubMedCrossRefGoogle Scholar
  503. R3.
    Ballas, S. K., M. R. Clark, N. Mohandas, H. F. Coffer, M. S. Caswell, M. O. Bergren, H. A. Perkins, and S. B. Shohet. 1984. Red cell membrane and cation deficiency in Rh null syndrome. Blood 63: 1046–1055.PubMedGoogle Scholar
  504. R4.
    Bennett, V. 1982. The molecular basis for membrane-cytoskeleton association in human erythrocytes. J. Cell. Biochem. 18: 49–65.PubMedCrossRefGoogle Scholar
  505. R5.
    Berkowitz, L. R., and E. P. Orringer. 1984. Ion transport in hemoglobin CC red cells. Blood 64: 23a.Google Scholar
  506. R6.
    Lew, V. L., A. Hockaday, M. Sepulveda, A. P. Somolyo, A. V. Somolyo, O. E. Ortiz, and R. M. Bookchin. 1985. Compartmentalization of sickle-cell calcium in endocytic vesicles. Nature (London) 315: 586–589.CrossRefGoogle Scholar
  507. R7.
    Brugnara, C., A. S. Kopin, H. F. Bunn, and D. C. Tosteson. 1985. Regulation of cation content and cell volume in erythrocytes from patients with homozygous Hemoglobin C. J. Clinical Investigation, 75: 1608–1617.CrossRefGoogle Scholar
  508. R8.
    Brugnara, C., A. Kopin, H. F. Bunn, and D. C. Tosteson. 1984. Cation transport in hemoglobin CC red cells. J. Gen. Physiol. 84: 33a.Google Scholar
  509. R9.
    Bunn, H. F., B. G. Forget, and H. M. Ranney. 1977. Human Hemoglobins. Saunders, Philadelphia. pp. 222–225.Google Scholar
  510. R10.
    Clark, M. R., N. Mohandas, S. H. Embury, and B. H. Lubin. 1982. A simple laboratory alternative to irreversibly sickled cell (ISC) counts. Blood 60: 659–662.PubMedGoogle Scholar
  511. R11.
    Coleman, M. S., J. Donofrio, J. J. Hutton, L. Hahn, A. Daoud, B. Lampkin, and J. Dyminski. 1978. Identification and quantitation of adenine deoxynucleotides in erythrocytes of patients with adenosine deaminase deficiency and severe combined immunodeficiency. J. Biol. Chem. 253: 1619–1626.PubMedGoogle Scholar
  512. R12.
    Ellory, J. C., P. B. Dunham, P. J. Logue, and G. W. Stewart. 1982. Anion-dependent cation transport in erythrocytes. Philos. Trans. R. Soc. London Ser. B 229: 483–495.CrossRefGoogle Scholar
  513. R13.
    Gahmberg, C. G. 1982. Molecular identification of the human Rho (D) antigen. FEBS Lett. 140: 93–97.PubMedCrossRefGoogle Scholar
  514. R14.
    Glaubensklee, C. S., A. P. Evan, and W. R. Galey. 1982. Structural and biochemical analysis of the McLeod erythrocyte membrane. I. Freeze fracture and discontinuous polyacrylamide gel electrophoresis. Vox Sang. 42: 262–271.PubMedCrossRefGoogle Scholar
  515. R15.
    Goodman, S. R., K. A. Schiffer, L. A. Casoria, and E. Eyster. 1982. Identification of the molecular defect in the erythrocyte membrane skeleton of some kindreds with hereditary spherocytosis. Blood 60: 772–784.PubMedGoogle Scholar
  516. R16.
    Halperin, J., R. Schaeffer, L. Galvez, and S. Malave. 1983. Ouabain-like activity in human cerebrospinal fluid. Proc. Natl. Acad. Sci. USA 80: 6101–6104.PubMedCrossRefGoogle Scholar
  517. R17.
    Hamlyn, J. M., R. Ringel, J. Schaeffer, P. D. Levinson, B. P. Hamilton, A. A. Kowarski, and M. P. Blaustein. 1982. A circulating inhibitor of Na + K ATPase associated with essential hypertension. Nature (London) 300: 650–652.CrossRefGoogle Scholar
  518. R18.
    Hebbel, R. P., J. W. Eaton, M. Balasingham, and M. H. Steinberg. 1982. Spontaneous oxygen radical generation by sickle erythrocytes. J. Clin. Invest. 70: 1253–1259.PubMedCrossRefGoogle Scholar
  519. R19.
    Hochmuth, R. M. 1982. Solid and liquid behavior or red cell membrane. Annu. Rev. Biophys. Bioeng. 11: 43–55.PubMedCrossRefGoogle Scholar
  520. R20.
    Jain, S. S., and S. B. Shohet. 1984. A novel phospholipid in irreversibly sickled cells: Evidence for in vivo peroxidative membrane damage in sickle cell disease. Blood 63: 362–367.PubMedGoogle Scholar
  521. R21.
    Lande, W. M., P. V. W. Thiemann, and W. C. Mentzer. 1982. Missing band 7 membrane protein in two patients with high Na, low K erythrocytes. J. Clin. Invest. 70: 1273–1280.PubMedCrossRefGoogle Scholar
  522. R22.
    Liu, S., J. Palek, and J. T. Prchal. 1982. Defective spectrin dimer-dimer association in hereditary elliptocytosis. Proc. Natl. Acad. Sci. USA 79: 2072–2076.PubMedCrossRefGoogle Scholar
  523. R23.
    Mohandas, N., and E. Evans. 1984. Adherence of sickle erythrocytes to vascular endothelial cells: Requirement for both cell membrane changes and plasma factors. Blood 64: 282–287.PubMedGoogle Scholar
  524. R24.
    Morrow, J. S., W. B. Haigh, and V. T. Marchesi. 1981. Spectrin oligomers: A structural feature of the erythrocyte cytoskeleton. J. Supramol. Struct. Cell. Biochem. 17: 275–287.PubMedCrossRefGoogle Scholar
  525. R25.
    Murphy, J. R. 1968. Hemoglobin CC disease: Rheological properties of erythrocytes and abnormalities in cell water. J. Clin. Invest. 47: 1483–1495.PubMedCrossRefGoogle Scholar
  526. R26.
    Niggli, V., E. S. Adunyah, B. F. Cameron, E. A. Bababunmi, and E. Carafoli. 1982. The Ca pump of sickle cell plasma membranes: Purification and reconstitution of the ATPase enzyme. Cell Calcium 3: 131–151.PubMedCrossRefGoogle Scholar
  527. R27.
    Orringer, E. P., C. Skrzynia, and L. R. Berkowitz. 1984. Quantification of the role of calcium in K loss in intact RBC. Clin. Res. 32: 318A.Google Scholar
  528. R28.
    Palek, J. 1983. Blood cell cytoskeleton. I. Red cell membrane skeleton. Semin. Hematol. 20: 139–242.Google Scholar
  529. R29.
    Parker, J. C., and L. R. Berkowitz. 1983. Physiologically instructive genetic variants involving the human red cell membrane. Physiol. Rev. 63: 261–313.PubMedGoogle Scholar
  530. R30.
    Pasvol, G., J. S. Wainscoat, and D. J. Weatherall. 1982. Erythrocytes deficient in glycophorin resist invasion by the malarial parasite, Plasmodium falciparum. Nature (London) 297: 64–66.CrossRefGoogle Scholar
  531. R31.
    Reiss, G., H. M. Ranney, and N. Shaklai. 1982. Association of hemoglobin C with erythrocyte ghosts. J. Clin. Invest. 70: 946952.Google Scholar
  532. R32.
    Schwartz, R., N. Duzgunes, D. Chiu, and B. Lubin. 1983. Interaction of phosphatidylserine-phosphatidylcholine liposomes with sickle erythrocytes. J. Clin. Invest. 71: 1570–1580.PubMedCrossRefGoogle Scholar
  533. R33.
    Smith, J. B., K. O. Ash, S. C. Hunt, W. M. Hentschel, W. Sprowell, M. M. Dadone, and R. R. Williams. 1984. Three red cell sodium transport systems in hypertensive and normotensive Utah adults. Hypertension 6: 159–166.PubMedGoogle Scholar
  534. R34.
    Speicher, D. W., J. S. Morrow, W. J. Knowles, and V. T. Marchesi. 1982. A structural model of human erythrocyte spectrin: Alignment of chemical and functional domains. J. Biol. Chem. 257: 9093–9101.PubMedGoogle Scholar
  535. R35.
    Spiegel, A. M., M. A. Levine, S. J. Marx, and G. D. Auerbach. 1982. Pseudohypoparathyroidism: The molecular basis for hormone resistance-a retrospective. N. Engl. J. Med. 307: 679680.Google Scholar
  536. R36.
    Tanner, M. J. A. 1982. Red cell invasion by the malarial parasite. Trends Biochem. Sci. 7: 231.Google Scholar
  537. R37.
    Trevisan, M., D. Ostrow, R. Cooper, K. Liu, S. Sparks, A. Okonek, E. Stevens, J. Marquardt, and J. Stamler. 1983. Abnormal red cell ion transport and hypertension: The Peoples Gas Company study. Hypertension 5: 363–367.PubMedGoogle Scholar
  538. R38.
    Wiley, J. S., D. A. Clarke, L. A. Bonaquisto, J. D. Scarlett, S. B. Hanap, and A. E. Doyle. 1984. Erythrocyte cation cotransport and countertransport in essential hypertension. Hypertension 6: 360–368.PubMedGoogle Scholar
  539. R39.
    Wolfe, L. C., K. M. John, J. C. Falcone, B. S. Byrne, and S. E. Lux. 1982. A genetic defect in the binding of protein 4.1 to spectrin in a kindred with hereditary spherocytosis. N. Engl. J. Med. 307: 1367–1374.PubMedCrossRefGoogle Scholar
  540. R40.
    Canessa, M. 1984. The polymorphism of red cell Na and K transport in essential hypertension: Findings, controversies, and perspectives. In: Erythrocyte Membrane 3: Recent Clinical and Experimental Advances. Liss, New York. pp. 293–315.Google Scholar
  541. R41.
    Worley, R. J., W. M. Hentschel, C. Cormier, S. Nutting, G. Pead, K. Zelenkos, J. B. Smith, K. D. Ash, and R. R. Williams. 1982. Increased sodium-lithium countertransport in erythrocytes of pregnant women. New Eng. J. Med. 307: 412–416.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • John C. Parker
    • 1
  • Lee R. Berkowitz
    • 1
  1. 1.Department of Medicine, School of MedicineUniversity of North CarolinaChapel HillUSA

Personalised recommendations