Skip to main content

A Life Scientist’s View of the “Mechanics of Cell Division” or: Unknown, Forgotten and Neglected Mechanisms of Mitosis

  • Chapter
Book cover Biomechanics of Cell Division

Part of the book series: Nato ASI Series ((NSSA,volume 132))

  • 82 Accesses

Abstract

The ancient Greeks defined mechanics as the art of constructing machines. Nowadays, mechanics is primarily understood as one of the main disciplines of physics. It is a term applied to the theories of force such as motion and stress, not necessarily taking into account the matter acted upon or acting. Mechanics is subdivided into three parts: kinematics, dynamics and statics. Kinematics is concerned with pure movements without considering their origin. Dynamics deals with movements in relation to those forces which cause them. Statics is the theory of the composition of forces and their equivalence (from an encyclopedia). According to these definitions, mechanics entails an ordered cooperation of forces or stress and their respective substrates. There is no space for non-physical dimensions and principles in these definitions which reinforce the impression of the unchangeable on the one hand and the unbroken, concerted combination of parts on the other hand, which does not leave anything to chance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akkas, N., 1980, On the biomechanics of cytokinesis in animal cells, J. Biomechanics, 13:977.

    Article  Google Scholar 

  • Allen, R. D., Weiss, D. G., Hayden, J. H., Brown, D. T., Fujiwake, H., and Simpson, M., 1985, Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: Evidence for an active role of microtibules in cytoplasmic transport. J. Cell Biol., 100:1736.

    Google Scholar 

  • Bajer, A., and Mole-Bajer, J., 1969, Formation of spindle fibers, kine- tochore orientation and behavior of the nuclear envelope during mitosis in endosperm. Fine structural and in vitro studies, Chromosoma, 27:448.

    Google Scholar 

  • Bajer, A. S., and Mole-Bajer, J., 1972, Spindle dynamics and chromosomemovements. Int. Rev. Cytol., Suppl. 3, 34:1.

    Google Scholar 

  • Boveri, T., 1900, Zellen-Studien. IV. Über die Natxir der Centrosomen, Jena. Z. Naturwiss., 356:1.

    Google Scholar 

  • Brenner, S., Pepper, D. A., Berns, M. W., Tan, E., and Brinkley, B. R., 1981, Kinetochore structure, duplication, and distribution in mammalian cells: Analysis by human auto-antibodies from Scleroderma patients, J. Cell Biol. 91:95.

    Article  Google Scholar 

  • Church, K., 1981, The architecture of and chromosome movements within the premeiotic interphase nucleus, in: “Mitosis/Cytokinesis”, A. M. Zimmerman, and A. Forer, eds., Acadmic Press, New York, London, Toronto, Sydney, San Francisco.

    Google Scholar 

  • Comings, D. E., 1968, The rationale for an ordered arrangement of chromatin in the interphase nucleus. Am. J. Human Genet., 20:440.

    Google Scholar 

  • Comings, D. E., and Okada, T.A., 1970, Condensation of chromosomes onto the nuclear membrane during prophase, Exp. Cell Res., 63:471.

    Google Scholar 

  • de Harven, E., and Bernhard, W., 1956, Étude au microscope électroniquede 1’ultrastructure du centriole chez les vertébrés, Z. Zellforsch., 45:378.

    Article  Google Scholar 

  • Euteneuer, U., and Mcintosh, J.R., 1981, Polarity of some mobility-related microtubules, Proc. Natl. Acad. Sci. USA, 78:372.

    Google Scholar 

  • Fuge, H., 1977, Ultrastructure of mitotic cells, “Mitosis — Facts andQuestions”, M. Little, N. Paweletz, C. Petzelt, H. Ponstingl, D. Schroeter, andH.-P. Zimmermann, eds., Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Fuge, H., Bastmeyer, M., and Steffen, W., 1985, A model for chromosome movement based on lateral interaction of spindle microtubules, J. Theor. Biol., 115:391.

    Google Scholar 

  • Ghosh, S., and Paweletz, N., 1984, Events associated with the initiation of mitosis in fused multinucleate HeLa cells. Chromosoma, 90:57.

    Article  Google Scholar 

  • Harris, P., 1975, The role of membranes in the organization of the mitotic apparatus, Exp. Cell Res., 94:409.

    Google Scholar 

  • Hepler, P. K., 1980, Membranes in the mitotic apparatus of barley cells, J. Cell Biol., 86:490.

    Article  Google Scholar 

  • Hepler, P. K., Mcintosh, J. R., and Cleland, S., 1970, Intermicrotubular bridges in mitotic spindle apparatus, J. Cell Biol., 45:438.

    Article  Google Scholar 

  • Hepler, P. K., and Wolniak, S.M., 1984, Membranes in the mitotic apparatus: Their structure and fimction. Intern. Rev. Cytol., 90:169.

    Google Scholar 

  • Hughes, A., 1952, “The Mitotic Cycle”, Academic Press, New York.

    Google Scholar 

  • Koonce, M. P., and Schliwa, M., 1985, Bidirectional transport can occur in cell processes that contain single microtubules, J. Cell Biol., 100:322.

    Article  Google Scholar 

  • Kubai, D. F., and Ris, H., 1969, Division in the dinoflagellate Gyrodinium cohnii (Schiller). A new type of nuclear reproduction, J. Cell Biol., 40:508.

    Google Scholar 

  • Lettré, H., 1961, Mitose und Dissoziabilität einzelner Mitoseschritte, Forsch. Fortschr., 35:39.

    Google Scholar 

  • Lettré, H., and Lettré, R., 1959, A cytological problem: permanence of the chromosomal spindle fiber during interphase. Nucleus, 2:23.

    Google Scholar 

  • Levine, L., 1963, “The Cell in Mitosis”, Academic Press, New York, London.

    Google Scholar 

  • Mazia, D., 1961, Mitosis and the physiology of cell division, in: “The Cell III”, J. Brächet and A. E. Mirsky, eds. Academic Press, New York.

    Google Scholar 

  • Mazia, D., 1978, Origin of twoness in cell reproduction, in: “Cell Reproduction: In Honor of Daniel Mazia”, E. R. Dirksen, D. M. Prescott, and C. F. Fox, eds. Academic Press, New York, San Francisco, London.

    Google Scholar 

  • Mazia, D., 1984, Centrosomes and mitotic poles, Exp. Cell Res., 153:1.

    Google Scholar 

  • Miller, R. H., and Lasek, R.J., 1985, Cross-bridges mediate anterograde and retrograde vesicle transport along microtubules in squid axo- plasm, J. Cell Biol., 101:2181.

    Article  Google Scholar 

  • Mitchison, T. J., and Kirschner, M.W., 1985, Properties of the kinetochore in vitro. II. Microtubule capture and ATP-dependent translocation, J. Cell Biol., 101:766.

    Google Scholar 

  • Moll, E., and Paweletz, N., 1980, Membranes of the mitotic apparatus of mammalian cells, Eur. J. Cell Biol., 21:280.

    Google Scholar 

  • Paweletz, N., 1967, Zur Flinktion des “Flemming-Körpers” bei der Teilung tierischer Zellen, Naturwiss., 54:533.

    Article  Google Scholar 

  • Paweletz, N., 1974, Elektronenmikroskopische Untersuchungen an frühen Stadien der Mitose bei HeLa-Zellen, Cytobiol., 9:368.

    Google Scholar 

  • Paweletz, N., 1981, Membranes in the mitotic apparatus. Mini-review, Cell Biol. Intern. Rep., 5:323.

    Google Scholar 

  • Paweletz, N., and Fehst, M., 1984a, The vesicular compartment of themitotic apparatus in mammalian cells. Cell Biol. Intern. Rep 8:675.

    Google Scholar 

  • Paweletz, N., and Fehst, M., 1984b, Are membranes of the mitotic apparatus translocated by microtubules? Cell Biol. Intern. Rep., 8:117.

    Google Scholar 

  • Paweletz, N., and Finze, E.-M., 1981, Membranes and microtubules of the mitotic apparatus of mammalian cells, J. Ultrastruct. Res., 76:127.

    Google Scholar 

  • Paweletz, N., and Mazia, D., 1979, Fine structure of the mitotic cycle of unfertilized sea urchin eggs activated by ammoniacal sea water, Eur. J. Cell Biol., 20:37.

    Google Scholar 

  • Paweletz, N., and Mazia, D., 1987, The fine structure of bipolarization, in: “The Cell Biology of Fertilization”., H. Schatten, and G. Schatten, eds. Academic Press, New York.

    Google Scholar 

  • Paweletz, N., Mazia, D., and Finze, E.-M., 1984, The centrosome cycle in the mitotic cycle of sea urchin eggs, Exp. Cell Res., 152:47.

    Google Scholar 

  • Paweletz, N., and Risueño, M. C., 1982, Transmission electron microscopic studies on the mitotic cycle of nucleolar proteins impregnated with silver, Chromosoma, 85:261.

    Article  Google Scholar 

  • Paweletz, N., and Schroeter, D., 1974, Scanning electron microscopic observations on cells grown in vitro. II. HeLa cells in mitosis, Cytobiol., 8:229.

    Google Scholar 

  • Paweletz, N., and Schroeter, D., 1986, On the fine structure of the mitotic apparatus of mammalian cells, “Genetic Toxicology of EnvironmentalChemicals, Part A”, C. Ramel, B. Lambert, and J. Magnussen, eds., Alan R. Liss, New York.

    Google Scholar 

  • Paweletz, N., and Schroeter, D., 1987, On the ultrastructure of the mitotic apparatus, in: “Progress and Topics in Cytogenetics. Aneuploidy — Incidence and Etiology”, A. A. Sandberg, and B. K. Vig, eds., Alan R. Liss, New York.

    Google Scholar 

  • Porter, K. R., and Machado, R., 1960, Studies on the endoplasmic reticulum. IV. Its form and distribution during mitosis in cells of onion root tip, J. Biophys. Biochem. Cytol., 7:167.

    Google Scholar 

  • Rabl, C., 1885, Über Telltheilung, Gegenbaurs Morph. Jahrb., 10:214.

    Google Scholar 

  • Rattner, J. B., and Berns, M. W., 1976, Centriole behavior in early mitosis of rat kangaroo cells (PtK2), Chromosoma, 54:387.

    Article  Google Scholar 

  • Rebhun, L.J., 1972, Polarized intracellular particle transport: Saltatory movements and cytoplasmic streaming. Int. Rev. Cytol., 32:93.

    Google Scholar 

  • Rhoades, M. M., 1961, Meiosis, in: “The Cell III”, J. Brächet and A. E. Mirsky, eds. Academic Press, New York.

    Google Scholar 

  • Rickards, G. K., 1975, Prophase chromosome movements in living housecricket spermatocytes and their relationship to prometaphase, anaphase and granule movements, Chromosoma, 49:407.

    Article  Google Scholar 

  • Rickards, G. K., 1981, Chromosome movements within prophase nuclei, in: “Mitosis/Cytokinesis”, A. M. Zimmerman and A. Forer, eds. Academic Press, New York, London, Toronto, Sydney, San Francisco.

    Google Scholar 

  • Roos, U.-P., 1973, Light and electron microscopy of rat kangaroo cells in mitosis. I. Formation and breakdown of the mitotic apparatus, Chromosoma, 40:43.

    Google Scholar 

  • Sanger, J. M., Pochapin, M. B., and Sanger, J.W., 1985, Midbody sealing after cytokinesis. Cell Tiss. Res., 240:287.

    Google Scholar 

  • Schatten, G., Maul, G. G., Schatten, H., Chaly, N., Simerly, C., Balczon, R., and Brown, D.L., 1985, Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins, Proc. Natl. Acad. Sei. USA, 82:4727.

    Google Scholar 

  • Schräder, F., 1941, The spermatogenesis of the earwig Anisolabis maritima Bon. with reference to the mechanism of chromosome movement. J. Morphol., 68:123.

    Article  Google Scholar 

  • Schräder, F., 1953, “Mitosis: The Movement of Chromosomes in Cell Division”, Columbia University Press, New York.

    Google Scholar 

  • Schroeter, D., Ehemann, V., and Paweletz, N., 1985, Cellular compartments in mitotic cells: Ultrahistochemical identification of Golgi elements in PtKi cells, Biol. Cell., 53:155.

    Google Scholar 

  • Suchard, S. J., and Goode, D., 1982, Microtubule-dependent transport of secretory granules during stalk secretion in a peritrich ciliate. Cell Mot., 2:47.

    Article  Google Scholar 

  • Taura, M., 1978, Origin and fate of paired cisternae in mitotic aortic cells of swine. J. Electr. Microsc., 27:283.

    Google Scholar 

  • Vale, R. D., Reese, T. S., and Sheetz, M. P., 1985a, Identification of anovel force generating protein (kinesin) involved in microtubule-based motility. Cell, 41:39.

    Article  Google Scholar 

  • Vale, R.D., Schnapp, B.J., Mitchison, T., Steuer, E., Reese, T. S., andSheetz, M. P., 1985b, Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell, 43:623.

    Article  Google Scholar 

  • Wassermann, F., 1929, “Die lebendige Masse. Wachstum und Vermehrung der lebendigen Masse”, Verlag von Julius Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Paweletz, N. (1987). A Life Scientist’s View of the “Mechanics of Cell Division” or: Unknown, Forgotten and Neglected Mechanisms of Mitosis. In: Akkas, N. (eds) Biomechanics of Cell Division. Nato ASI Series, vol 132. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1271-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1271-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1273-4

  • Online ISBN: 978-1-4684-1271-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics