Skip to main content

Meaning of a Modified LDL in Humans

  • Chapter
Lipoproteins and Atherosclerosis

Abstract

Abundant epidemiological experimental and clinical data support a primary atherogenic role for plasma low density lipoproteins (LDL) (1). The mechanism by which LDL are mostly cleared from the blood circulation is the LDL receptor pathway which is normally regulated by a feedbak mechanism thus preventing the accumulation of cholesterol esters in the cells (2). This pathway is altered in familial hypercholesterolemia (FH). The homozygous form of FH, in which LDL receptors are severely deficient (10%), occurs in only one subject out of every million. Heterozygotes, with a consistent reduction of receptors (50%), represent one out of every 500 persons (3). Among patients with myocardial infarctions under age 60 5% have a genetic defect of the LDL specific receptors (3). It happens therefore that coronary atherosclerosis, as well the others pictures of the clinical atherosclerosis, is mostly present in people having a normal receptorial system. The accumulation of cholesteryl esters in the foam cells, the peculiar trait of the atherosclerotic plaque, has to happen therefore through other pathways. Foam cells derive from two cellular sources: the arterial smooth muscle cells (SMC) and the monocytes-derived macrophages (MM) (4). The latter cells type, unlike many other cells, take up only a little amount of LDL by the receptor-mediated endocytosis mechanism, but have a distinct receptorial system that binds and degrades the more negatively charged LDL (5, 6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. B. Kannel, W. P. Castelli, T. Gordon, and P. M. McNamara, Serum cholesterol, lipoproteins and the risk of coronary heart disease. Ann. Intern. Med. 74: 1 (1971).

    PubMed  CAS  Google Scholar 

  2. J. L. Goldstein, and M. S. Brown, Low density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem. 46: 897 (1977)

    Article  PubMed  CAS  Google Scholar 

  3. J. L. Goldstein, and M. S. Brown, Familial hypercholesterolemia, in: “The metabolic basis of inherited disease. V”, J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, M. S. Brown, eds., McGraw Hill Co, 672 (1983).

    Google Scholar 

  4. R. Ross, Atherosclerosis: a problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis 1: 293 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. J. L. Goldstein, Y. K. Ho, S. K. Basu, and M. S. Brown, Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoproteins, producing massive cholesterol ester deposition, Proc. Natl. Acad. Sci. USA 76: 333 (1979).

    Article  PubMed  CAS  Google Scholar 

  6. O. Stein, and Y. Stein, Bovine aortic endothelial cells display macrophage-like properties towards acetylated 125I-labelled low density lipoproteins, Biochim. Biophys. Acta 620: 631 (1980)

    PubMed  CAS  Google Scholar 

  7. J. L. Goldstein, and M. S. Brown, Insights into the pathogenesis of atherosclerosis derived from studies of familial hypercholesterolemia, in: “Metabolic risk factors in ischemic cardiovascular disease ”, L. A. Carlson, and B. Pernow, eds., Raven Press, New York, 17 (1982).

    Google Scholar 

  8. A. M. Fogelman, I. Shechter, J. Seager, M. Hokom, J. S. Childs and P. A. Edwards, Malondialdehyde alteration of low density lipoproteins leads to cholesterol ester accumulation in human monocyte-derived macrophages, Proc. Nat. Acad. Sci. USA, 77: 2214 (1980)

    Article  PubMed  CAS  Google Scholar 

  9. T. Henriksen, E. Mahoney, and D. Steinberg, Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoprotein, Proc. Nat. Acad. Sci. USA 78: 6499 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. J. R. Hessler, D. W. Morel, J. L. Lewis, and G. M. Chisolm, Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis 3: 213 (1983).

    Google Scholar 

  11. T. Henriksen, S. A. Evensen, and B. Carlander, Injury to human endothelial cells in culture induced by low density lipoproteins. Scand. J. Clin. Lab. Invest., 39: 361 (1979).

    Article  PubMed  CAS  Google Scholar 

  12. J. Schuh, A. Novogzodisky, and R. H. Haschemeyer, Inhibition of lymphocyte mitogenesis by autoxidized low density lipoproteins. Biochem. Biophys. Res. Comm., 84: 763 (1978)

    Article  PubMed  CAS  Google Scholar 

  13. U. P. Steinbrecher, S. Parthasazathy, D. S. Leake, J. L. Witzum, and D. Steinberg, Modification of low density lipoproteins by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc. Natl. Acad. Sci. USA 81: 3883 (1984)

    Article  PubMed  CAS  Google Scholar 

  14. I. Nishigaki, H. Hagihara, H. Tusunekawa, M. Maseki, and K. Yagi, Lipid peroxide levels of serum lipoprotein fractions of diabetic pateints. Biochem. Med., 25: 373 (1981)

    Article  PubMed  CAS  Google Scholar 

  15. Y. Goto, Lipid peroxides as a cause of vascular diseases, in: “Lipid peroxides in biology and medicine”, K. Yagi, ed., Academic Press Inc., New York 295 (1982)

    Google Scholar 

  16. G. Bittolo Bon, G. Cazzolato, and P. Avogaro, Changes of apolipoprotein B molecular weight and immunoreactivity in malondialdehyde-modified low density lipoproteins, Artery 12: 74 (1983).

    PubMed  CAS  Google Scholar 

  17. G. Bittolo Bon, G. Cazzolato, S. Zago, and P. Avogaro, Effects of pantethine on in-vitro peroxidation of low density lipoproteins. Atherosclerosis 57: 99 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. H. F. Hoff, LDL with altered surface charge: a new risk factor in atherogenesis? Artery 6: 178 (1979).

    CAS  Google Scholar 

  19. W. A. Pryor, L. Castle, Chemical methods for detection of lipid hydroperoxides, in: “Methods in Enzymology 105: oxigen radicals in biological systems”, L. Packer, ed., Academic Press 293 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Avogaro, P., Bon, G.B., Cazzolato, G. (1987). Meaning of a Modified LDL in Humans. In: Malmendier, C.L., Alaupovic, P. (eds) Lipoproteins and Atherosclerosis. Advances in Experimental Medicine and Biology, vol 210. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1268-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1268-0_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1270-3

  • Online ISBN: 978-1-4684-1268-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics