Skip to main content

Characteristics of High Affinity and Low Affinity Adenosine Binding Sites in Human Cerebral Cortex

  • Chapter
  • First Online:
Purine and Pyrimidine Metabolism in Man V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 195B))

  • 22 Accesses

Summary

The binding characteristics of human brain cortical membrane fractions were evaluated to test the hypothesis that there are A1 and A2 adenosine binding sites. The ligands used were 2-chloro[8-3H]adenosine and N6-[adenine-2,8-3 H]cyclohexyladenosine.

Binding of chloroadenosine to human brain cortical membranes was time dependent, reversible and concentration dependent. The Kd calculated for chloroadenosine by Scatchard analysis of equilibrium data was 280 nM, with a Bmax of 1.6 pmoles/mg protein, suggesting a single class of binding sites. The specificity of chloroadenosine binding was assessed by the ability of adenosine analogs to compete for binding sites. Using this approach, the apparent Kd was estimated to be O.74 μ-M for 5′-N-ethylcarboxamideadenosine, 1 ′M cyclohexyladenosine, and 13 ′M for N6-(L-2-phenylisopropyl)adenosine. Isobutylmethylxanthine and theophylline, receptor antagonists, had apparent Kd values of 84 ′M and 105 ′M, respectively. Hill slope factors ranged from O.3 to O.6. Chloroadenosine binding to human brain cortical membranes approached equilibrium at 90 minutes, with a T 1/2, of 10 minutes. The kob was O.080 min−1 and the k1 was 7.5 x 104 min−1 M−1. Reversibility of chloroadenosine binding at equilibrium was completed at approximately 10 minutes with a k2 value of 0.074 min −1. The Kd calculated from the rate constants was 990 nM.

Cyclohexyladenosine binding was concentration dependent. The Kd calculated for cyclohexyladenosine via Scatchard analysis of equilibrium data was 5 nM with a Bmax of O.35 pmoles/mg protein. Cyclohexyladenosine binding was displaced by 3 known receptor agonists: N6 -(L-2-phenyliso propyl)adenosine (Kd 4 nM), 2-chloroadenosine (Kd 10 nM) and 5′-N-ethyl-carboxamideadenosine (Kd 6 nM). The apparent Kd values for the agonists were 1 to 3 orders of magnitude lower with this ligand as compared to radioactive chloroadenosine. Binding was also displaced by 2 known antagonists, isobutylmethylxanthine and theophylline, with apparent Kd values of 4 μM and 8 μM, respectively. Hill slope factors ranged from 0.5 to 0.8.

Our data support the existence of two adenosine binding sites in human cortex compatable with the low affinity (A2) and high affinity (A1) adenosine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. N. Crawley, J. Patel, and P. J. Marangos, Behavioral characterization of two long-lasting adenosine analogs: sedative properties and interaction with diazepam, Life Science 29: 2623–2630 (1981).

    Article  CAS  Google Scholar 

  2. J. W. Daly, R. F. Bruns, and S. H. Snyder, Adenosine receptors in the central nervous system: relationship to the central actions of methylxanthines, Life Science 28: 2083–2097 (1981).

    Article  CAS  Google Scholar 

  3. J. W. Daly, Binding of radioactive ligands to adenosine receptors in the central nervous system, In: “Regulatory Function of Adenosine,” R. M. Berne, T. W. Rail, and R. Rubio, ed., Martinus Ni jhoff Publishers, Boston (1983).

    Google Scholar 

  4. D. M. F. Cooper, C. Londos, and M. Rodbell, Adenosine receptor-mediated inhibition of rat cerebral cortical adenylate cyclase by a GTP-dependent process, Mol Pharmacol 18: 598–601 (1980).

    CAS  PubMed  Google Scholar 

  5. C. Londos and J. Wolff, Two distinct adenosine-sensitive sites on adenylate cyclase, Proc Natl Acad Sci USA 74: 5482–5486 (1977).

    Article  CAS  Google Scholar 

  6. C. Londos, D. M. F. Cooper, W. Schlegel, and M. Rodbell, Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis, Proc Natl Acad Sci USA 75: 5362–5366 (1978).

    Article  CAS  Google Scholar 

  7. C. Londos, D. M. F. Cooper, and J. Wolff, Subclasses of external adenosine receptors, Proc Natl Acad Sci USA 77: 2551–2554 (1980).

    Article  CAS  Google Scholar 

  8. S. H. Snyder, J. J. Katims, Z. Annau, R. F. Bruns, and J. N. Daly, Adenosine receptors and behavioral actions of methylxanthines, Proc Natl Acad Sci USA 78: 3260–3264 (1981).

    Article  CAS  Google Scholar 

  9. M. Williams and E. A. Rlsley, Chemical characterization of putative central purinergic receptors by using 2-chloro[3H]adenosine, a stable analog of adenosine, Proc Natl Acad Sci USA 77: 6892–6896 (1980).

    Article  CAS  Google Scholar 

  10. I. H. Fox and L. Kurpis, Binding characteristics of an adenosine receptor in human placenta, J Biol Chem 258: 6952–6955 (1983).

    CAS  PubMed  Google Scholar 

  11. D. John and I. H. Fox, Characteristics of high affinity and low affinity adenosine binding sites in human cerebral cortex, J Lab Clin Med (In Press).

    Google Scholar 

  12. P. H. Wu, J. W. Phillis, K. Balls, and B. Rinaldi, Specific binding of 2-[3H]chloroadenosine to rat brain cortical membranes, Can J Physiol Pharmacol 58: 576–579 (1980).

    Article  CAS  Google Scholar 

  13. R. F. Bruns, J. W. Daly, and S. H. Snyder, Adenosine receptors in brain membranes: Binding of N6-cyclehexyl[3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine, Proc Natl Acad Sci USA 77: 5547–5551 (1980).

    Article  CAS  Google Scholar 

  14. U. Schwabe and T. Trost, Characterization of adenosine receptors in rat brain by (-)[3H]N6-phenylisopropyladenosine, Naunyn-Schmiedeberg’s Arch Pharmacol 313: 179–187 (1980).

    Article  CAS  Google Scholar 

  15. T. Trost and U. Schwabe, Adenosine receptors in fat cells: identification by (−)−N6−[3H]phenylisopropyladenosine binding, Mol Pharmacol 19: 228–235 (1981).

    CAS  PubMed  Google Scholar 

  16. K. M. M. Murphy and S. H. Snyder, Adenosine receptors in rat testes: labeling with 3H-cyclohexyladenosine, Life Sci 28: 917–920 (1981).

    Article  CAS  Google Scholar 

  17. R. R. Goodman, M. J. Cooper, M. Gavish, and S. H. Snyder, Guanine nucleotide and cation regulation of the binding of [ H]cyclohexyl-adenosine and [3H]diethylphenylxanthine to adenosine A1 receptors in brain membranes, Mol Pharmacol 21: 329–335 (1982).

    CAS  PubMed  Google Scholar 

  18. J. Patel, P. J. Marangos, J. Stivers, and F. K. Goodwin, Characterization of adenosine receptors in rat brain using N6−cyclohexyl[ 3H]-adenosine, Brain Res 237: 203–214 (1982).

    Article  CAS  Google Scholar 

  19. U. Schwabe, General aspects of binding of ligands to adenosine receptors, in: “Regulatory Function of Adenosine,” R. M. Berne, T. W. Rall, and R. Rubio, eds., Martinus Ni jhoff Publishers, Boston (1983).

    Google Scholar 

  20. Y. Lenschow, E. Hüttemann, D. Ukema, and U. Schwabe, Study of Ra adenosine receptors in human platelets by radioligand binding, Naunyn-Schmiedeberg’s Arch Pharmacol 321 (Suppl.): R31 (1982).

    Google Scholar 

  21. J. W. Phillis and P. H. Wu, Specific binding of 3H−2-chloroadenosine to rat brain cortical membranes: adenosine receptors, Can J Physiol Pharmacol 58: 576–579 (1980).

    Article  Google Scholar 

  22. D. Van Calker, M. Muller, and B. Hamprecht, Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells, J Neurochem 33: 999–1005 (1979).

    Article  Google Scholar 

  23. M. J. Lohse, V. Lenschow, and U. Schwabe, Two affinity states of Ri adenosine receptors in brain membranes: analysis of guanine nucleotide and temperature effect on radioligand binding, Mol Pharmacol 26: 1–9 (1984).

    CAS  PubMed  Google Scholar 

  24. K. M. M. Murphy and S. H. Snyder, Heterogeneity of adenosine A1 receptor binding in brain tissue, Mol Pharmacol 22: 250–257 (1982).

    CAS  PubMed  Google Scholar 

  25. J. Prémont, M. Preez, G. Blanc, J. P. Tassin, A. Thierry, D. Hervé, and J. Bockaert, Adenosine-sensitive adenylate cyclase in rat brain homogenates: kinetic characteristics, specificity, topographical, subcellular and cellular division, Mol Pharmacol 16: 790–804 (1979).

    PubMed  Google Scholar 

  26. M. B. Anand-Srivastava and R. A. Johnson, Regulation of adenosine-sensitive adenylate cyclase from rat brain striatum, J Neurochem 35: 905–914 (1980).

    Article  CAS  Google Scholar 

  27. D. R. Haubrich, M. Williams, and G. G. Yarbrough, 2-chloroadenosine inhibits brain acetylcholine turnover in vivo, Can J Physiol Pharmacol 59: 1196–1198 (1981).

    Article  CAS  Google Scholar 

  28. R. R. Goodman and S. H. Snyder, Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine, J Neuroscience 2: 1230–1241 (1982).

    Article  CAS  Google Scholar 

  29. I. J. Kopin, Neurotransmitters and the Lesch-Nyhan syndrome, New Engl J Med 305: 1148 (1981).

    Article  CAS  Google Scholar 

  30. R. D. Green, H. K. Poundfit, and S. M. H. Yeung, Modulation of striatal dopaminergic function by local injection of 5′-N-ethylcarboxamide-adenosine, Science 218: 58–60 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

John, D., Fox, I.H. (1986). Characteristics of High Affinity and Low Affinity Adenosine Binding Sites in Human Cerebral Cortex. In: Nyhan, W.L., Thompson, L.F., Watts, R.W.E. (eds) Purine and Pyrimidine Metabolism in Man V. Advances in Experimental Medicine and Biology, vol 195B. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-1248-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1248-2_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-1250-5

  • Online ISBN: 978-1-4684-1248-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics