Skip to main content

Mammary Tumor Growth Arrest by Collagen Synthesis Inhibitors

  • Chapter
Biological Responses in Cancer

Abstract

The basal lamina is an extracellular matrix material that is deposited by mammary epithelium at the interface between the epithelium and surrounding stroma. It forms a limiting barrier and serves to maintain tissue organization. Recent experiments have indicated that production of the lamina is important for the growth and/or survival of the epithelium of the normal gland and for many well differentiated rate mammary tumors. Lamina deposition can be selectively blocked in vivo by proline analogues that are specific inhibitors of collagen production, with a consequent involution of the mammary epithelium and a regression of mammary tumors. Because of the importance of the lamina, the mechanisms and factors regulating its production have been sought. Current evidence indicates that endogenously produced growth factors regulate lamina production in an autocrine fashion. Very potent factors that differentially stimulate synthesis of the lamina proteins, type IV collagen and laminin, have been detected in rodent and human mammary tumors. Most interestingly, the responsiveness of mammary cells to these growth factors is potentiated when the mammary cells interact with stromal collagen. This seems to provide for the selective deposition of a lamina at the interface between the epithelium and stroma. The dependency of mammary tumors on lamina production can be lost by a process of selection or dedifferentiation. Some rat mammary tumors selected by serial transplantation no longer produce a lamina. Their growth in vivo becomes resistant to proline analogues and their production of the growth factor that enhances lamina protein production is lost. These tumors also do not contain myoepithelial cells, the cells believed to be responsible for most of the type IV collagen production by the normal epithelium and the epithelium of well differentiated mammary tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bano, M., and Kidwell, W. R., 1984, Characterization of subpopulations of rat mammary tumor cells, Cancer Res. 44: 3055–3062.

    PubMed  CAS  Google Scholar 

  • Bano, M., Zwiebel, J. A., Salomon, D. S., and Kidwell, W. R., 1983a, Detection and partial characterization of collagen synthesis stimulating activities in rat mammary adenocarcinomas, J. Biol. Chem. 258: 2729–2735.

    CAS  Google Scholar 

  • Bano, M., Salomon, D. S., and Kidwell, W. R., 1983b, Control of basement membrane protein production by normal and neoplastic breast epithelium, J. Cell Biol 97: 453a.

    Google Scholar 

  • Bano, M., Salomon, D., and Kidwell, W. R., 1985. Isolation of a growth factor from human milk and human mammary tumors, J. Biol. Chem. 260: 5745–5750.

    PubMed  CAS  Google Scholar 

  • Bruckner, P., Eikenberry, E. F., and Procokop, D. J., 1981, Formation of triple helix of Type I procollagen in cells, Eur. J. Biochem. 118: 607–613.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, E., Pauling, L., and Leibovitz, B., 1979, Ascorbic acid and cancer: A review, Cancer Res. 39: 663–681.

    CAS  Google Scholar 

  • Dulbecco, R., Henahan, M., Bowman, M., Okada, S., Battifora, H., and Unger, M., 1981, Generation of fibroblast-like cells from cloned epithelial mammary cells in vitro: A possible new cell type, Proc. Natl. Acad. Sci. USA 78: 2345–2349.

    Article  PubMed  CAS  Google Scholar 

  • Furthmayr, H., Roll, F. J., Madri, J. A., and Foellmer, H. G., 1982, Composition of basement membranes as viewed with the electron microscope, in: New Trends in Basement Membrane Research (K. Kuhn, H. Schoene, and R. Timpl, eds.), Raven Press, New York, pp. 31–48.

    Google Scholar 

  • Hassell, J. R., Robey, P. G., Barrach, H., Wilczek, J., Rennard, S. I., and Martin, G. R., 1980, Isolation of a heparin sulfate containing proteoglycan from basement membrane, Proc. Natl. Acad. Sci. USA 77:4494–4498.

    Google Scholar 

  • Janss, D. H., Hillman, E. A., Malan-Shibley, L. R., and Ben, T. L., 1980, Methods for the isolation and culture of normal human breast epithelial cells, Methods Cell Biol. 21: 108–135.

    Google Scholar 

  • Kidwell, W. R., Wicha, M. S., Salomon, D. S., and Liotta, L. A., 1980a, Differential recognition of basement membrane collagen by normal and neoplastic breast epithelium, in: Cell Biology of Breast Cancer ( M. Brennan, C. M. McGrath, and M. Rich, eds.), Academic Press, New York, pp. 17–32.

    Google Scholar 

  • Kidwell, W. R., Wicha, M. S., Salomon, D. S., and Liotta, L. A., 1980b, Hormonal controls of collagen substratum formation by cultured mammary cells: Implications for growth and differentiation, in: Control Mechanisms in Animal Cells ( L. Jiminez de Asua, R. LeviMontakini, R. Shields, and S. lacobelli, eds.), Raven Press, New York, pp. 333–340.

    Google Scholar 

  • Kidwell, W. R., Salomon, D. S., Liotta, L. A., Zwiebel, J. A., and Bano, M., 1982, Effects of growth factors on mammary epithelial cell proliferation and basement membrane synthesis, in: Growth of Cells in Hormonally Defined Media ( G. Sato, A. Pardee, and D. Sirbasku, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 807–818.

    Google Scholar 

  • Kidwell, W. R., Taylor, S. J., and Bano, M., 1984a, Growth arrest of mammary tumors by proline analogs, in: Progress in Cancer Research and Therapy, Volume 31 ( F. Bresciani, R. King, M. Lippman, M. Namer, and J.-P. Ragnaud, eds.), Raven Press, New York, pp. 129–136.

    Google Scholar 

  • Kidwell, W. R., Bano, M., and Salomon, D. S., 1984b, Growth of normal mammary epithelium on collagen in serum-free medium, in: Cell Culture Methods for Molecular and Cell Biology, Volume 2 ( D. Barnes, D. Sirbasku, and G. Sato eds.), Alan R. Liss, New York, pp. 105–125.

    Google Scholar 

  • Leblond, C. P., Inoue, S., and Laurie, G. W., 1983, Ultrastructure of Reichert’s membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac, J. Cell Biol. 97: 1524–1532.

    Article  PubMed  Google Scholar 

  • Lewko, W. M., Liotta, L. A., Wicha, M. S., Vonderhaar, B. K., and Kidwell, W. R., 1981, Sensitivity of N-nitrosomethylurea-induced rat mammary tumors to cis-hydroxyproline, an inhibitor of collagen production, Cancer Res. 41: 2855–2862.

    CAS  Google Scholar 

  • Liotta, L. A., Wicha, M. S., Rennard, S. I., Foidart, J., Garbisa, S., and Kidwell, W. R., 1980, Hormonal requirements for basement membrane collagen deposition by cultured mammary epithelium, Lab. Invest. 41: 511–518.

    Google Scholar 

  • Martinez-Hernandez, A., Gay, S., and Miller, E. J., 1982, Ultrastructural localization of type V collagen in the rat kidney, J. Cell Biol. 92: 343–349.

    Article  PubMed  CAS  Google Scholar 

  • Peterkofsky, B., and Diegelmann, R., 1971, Use of a mixture of proteinase-free collagenase for the specific assay of radioactive collagen in the presence of other proteins, Biochemistry 10: 988–994.

    Article  PubMed  CAS  Google Scholar 

  • Rao, C. N., Margules, I. M., Tralka, T. S., Terranova, V. P., Madri, J. A., and Liotta, L. A., 1982, Isolation of a subunit of laminin and its role in molecular structure and tumor cell attachment, J. Biol. Chem. 257: 9740–9744.

    PubMed  CAS  Google Scholar 

  • Salomon, D. S., Liotta, L. A., and Kidwell, W. R., 1981, Differential response to growth factors by rat mammary epithelium plated on different collagen substrata in serum free medium, Proc. Natl. Acad. Sci. USA 78: 382–386.

    Article  PubMed  CAS  Google Scholar 

  • Silberstein, G. B., and Daniel, C. W., 1982, Glycosamino-glycans in the basal lamina and ex- tracellular matrix of the developing mouse mammary duct, Dev. Biol. 90: 215–222.

    Article  PubMed  CAS  Google Scholar 

  • Strum, J. M., Lewko, W. M., and Kidwell, W. R., 1981, Structural alterations within NMUinduced mammary tumors after in vivo treatment with cis-hydroxyproline, Lab. Invest. 45: 347–354.

    PubMed  CAS  Google Scholar 

  • Terranova, U. P., Liotta, L. A., Russo, R., and Martin, G. R., 1982, Laminin mediates the attachment of Pc epidermal cells to type IV collagen, Cell 22: 719–726.

    Article  Google Scholar 

  • Timpl, R., Martin, G. R., Bruckner, P., Wicha, G., Wideman, H., 1978, Nature of the collagenous protein in a tumor basement membrane, Eur. J. Biol. Chem. 84: 43–52.

    Article  CAS  Google Scholar 

  • Timpl, R., Rhode, H., Robey, P. G., Rennard, S. I., Foidart, J. M., and Martin, G. R., 1979, Laminin, a glycoprotein from basement membranes, J. Biol. Chem. 254: 9933–9937.

    PubMed  CAS  Google Scholar 

  • Uitto, J., and Prockop, D., 1977, Incorporation of praline analogs into procollagen, Arch. Biochem. Biophys. 181: 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Warburton, M. J., Ormerod, E. J., Monaghan, P., Ferns, S., and Rudland, P. S., 1981, Characterization of a myoepithelial cell line derived from a neonatal rat mammary gland, J. Cell Biol. 91: 827–836.

    Article  PubMed  CAS  Google Scholar 

  • Warburton, M. J., Mitchell, D., Ormerod, E. J., and Rudland, P. S., 1982, Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating and involuting rat mammary gland, J. Histochem. Cytochem. 30: 667–676.

    Article  PubMed  CAS  Google Scholar 

  • Werb, Z., Enders, G., and Friend, D. S., 1981, Differential effects of cell flattening on the synthesis of collagen and fibronectin in cultures of smooth muscle cells, J. Cell Biol. 91: 116a.

    Google Scholar 

  • Wicha, M. S., Liotta, L. A., and Kidwell, W. R., 1979a, Effects of free fatty acids on the growth of normal and neoplastic mammary epithelial cells, Cancer Res. 39: 426–435.

    PubMed  CAS  Google Scholar 

  • Wicha, M. S., Liotta, L. A., Garbisa, S., and Kidwell, W. R., 1979b, Basement membrane collagen requirements for attachment and growth of mammary epithelium, Exp. Cell lies. 124: 181–190.

    Article  CAS  Google Scholar 

  • Wicha, M. S., Liotta, L. A., Vonderhaar, B. K., and Kidwell, W. R., 1980, Effects of inhibition of basement membrane collagen deposition on rat mammary gland development, Dev. Biol. 80: 253–266.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J. M., and Daniel, C. W., 1983, Mammary ductal elongation: Differentiation of myo- epithelium and basal lamina during branching morphogenesis, Dev. Biol. 97: 274–290.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Kidwell, W.R., Bano, M., Taylor, S.J. (1985). Mammary Tumor Growth Arrest by Collagen Synthesis Inhibitors. In: Mihich, E. (eds) Biological Responses in Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1236-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1236-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1238-3

  • Online ISBN: 978-1-4684-1236-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics