Skip to main content

Modes of Action of Antiprotozoal Agents

  • Chapter
Chemotherapy of Parasitic Diseases

Abstract

There are relatively few antiprotozoal agents compared with the many antibiotics available for the treatment of bacterial infections. Similarities in host and eukaryotic parasite metabolism have made development of specific chemotherapeutic agents difficult and have necessitated the use of agents that often exhibit limited specificity for the parasite and excessive toxicity to the host. This chapter examines the mechanisms by which antiprotozoal agents exert their effects. Information on modes of action of several antiprotozoals is lacking either because little research has been undertaken to define the mechanisms or because primary and secondary drug effects have been difficult to differentiate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacchi, C.J., Nathan, H.C., Hutner, S.H., McCann, P.P., and Sjoerdsma, A., 1980, Polyamine metabolism: A potential therapeutic target in trypanosomes, Science 210:332–334.

    Article  PubMed  CAS  Google Scholar 

  • Beach, D.H., Holz, G.G., and Anekwe, G.E., 1979, Lipids of Leishmania promastigotes, J. Parasitol. 65:203–216.

    Article  CAS  Google Scholar 

  • Berens, R.L., Marr, J.J., Nelson, D.J., and LaFon, S.W., 1980, Antileishmanial effect of allopurinol and allopurinol ribonucleoside on intracellular forms of Leishmania donovani, Biochem. Pharmacol. 29:2397–2398.

    Article  PubMed  CAS  Google Scholar 

  • Bijsterbosch, M.K., Duursman, A.M., Bouma, J.M.W., and Gruber, M., 1982, Endocytosis and breakdown of mitochondrial malate dehydrogenase in the rat in vivo, Biochem. J. 208:61–67.

    PubMed  CAS  Google Scholar 

  • Boersmer, D., McGill, S.M., Mollenkamp, J.W., and Roufa, D.J., 1979, Emetine resistance in Chinese hamster cells is linked genetically with an altered 40S ribosomal subunit protein S20, Proc. Natl. Acad. Sci. U.S.A. 76:415–419.

    Article  Google Scholar 

  • Brack, C., Delani, E., Riou, G., and Festy, B., 1972, Molecular organization of the kinetoplast DNA of Trypanosoma cruzi treated with Berenil, a DNA intercalating drug, J. UItrastruct. Res. 39:568–579.

    Article  CAS  Google Scholar 

  • Bueding, E., and Mansour, J.M., 1957, The relationship between inhibition of PFK activity and the mode of action of trivalent organic antimonials on Shistosoma mansoni, Br. J. Pharmacol. 12:159.

    CAS  Google Scholar 

  • Catlin, J.C., Pardini, R.S., Daves, G.D., Heidker, J.C., and Folkers, K., 1968, New hydroxyquinones, apparent inhibitors of coenzyme Q enzyme systems, J. Am. Chem. Soc. 90:3572–3574.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., 1948, Effects of arsenicals and antimonials on the activity of glycolytic enzymes in lysed preparations of Trypanosoma equiperdium, J. Infect. Dis. 82:226.

    Article  PubMed  CAS  Google Scholar 

  • Chou, A.C., Chevli, R., and Fitch, C.D., 1980, Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites, Biochemistry 19:1543–1549.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson, A.B., and Brohn, F.H., 1976, Trypanosomiasis: An approach to chemotherapy by the inhibition of carbohydrate catabolism, Science 194:204–206.

    Article  PubMed  CAS  Google Scholar 

  • Davis, B.D., Dulbecco, R., Eisen, H.N., Ginsberg, H.S., Wood, W.B., and McCarty, M., 1973, Microbiology, 2nd ed., Harper & Row, New York.

    Google Scholar 

  • Docampo, R., and Stoppani, A.O.M., 1979, Generation of Superoxide anion and hydrogen peroxide induced by nifurtimox in Trypanosoma cruzi, Arch. Biochem. Biophys. 197:317–321.

    Article  PubMed  CAS  Google Scholar 

  • Docampo, R., Mason, R.P., Motley, C., and Muniz, R.P.A., 1981a, Generation of free radicals induced by nifurtimox in mammalian tissues, J. Biol. Chem. 256:10930–10933.

    PubMed  CAS  Google Scholar 

  • Docampo, R., Moreno, S.N.J., Stoppani, A.O.M., Leon, W., Cruz, F.S., Villaita, F., and Muniz, R.P.A., 1981b, Mechanism of nifurtimox toxicity in different forms of Trypanosoma cruzi, Biochem. Pharmacol. 30:1947–1951.

    Article  PubMed  CAS  Google Scholar 

  • Dutta, P., and Fitch, C.D., 1983, Diverse membrane-active agents modify the hemolytic response to ferriprotoporphyrin IX, J. Pharmacol. Exp. Ther. 225:729–734.

    PubMed  CAS  Google Scholar 

  • Entner, N., 1979, Emetine binding to ribosomes of Entamoeba histolytica — Inhibition of protein synthesis and amebicidal action, J. Protozool. 26:324–328.

    PubMed  CAS  Google Scholar 

  • Entner, N., and Grollman, A.P., 1973, Inhibition of protein synthesis: A mechanism of amebicidal action of emetine and other structurally related compounds, J. Protozool. 20:160–163.

    PubMed  CAS  Google Scholar 

  • Fairlamb, A.H., and Bowman, I.B.R., 1977, Trypanosoma brucei: Suramin and other trypanocidal compounds’ effects on sn-glycerol-3-phosphate oxidase, Exp. Parasitol. 43:353–361.

    Article  PubMed  CAS  Google Scholar 

  • Fairlamb, A.H., and Bowman, I.B.R., 1980, Uptake of the trypanocidal drug suramin by bloodstream forms of Trypanosoma brucei and its effects on respiration and growth rate in vivo, Mol. Biochem. Parasitol. 1:315–333.

    Article  PubMed  CAS  Google Scholar 

  • Fairlamb, A.H., Opperdoes, F.R., and Borst, P., 1977, New approach to screening drugs for activity against African trypanosomes, Nature (Lond.) 265:270–271.

    Article  CAS  Google Scholar 

  • Ferone, R., 1973, The enzymatic synthesis of dihydropteroate and dihydrofolate by Plasmodium berghei, j. Protozool. 20:459–464.

    PubMed  CAS  Google Scholar 

  • Ferone, R., Burchall, J.J., and Hitchings, G.H., 1969, Plasmodium berghei dihydrofolate reductase; isolation, properties, and inhibition by antifolates, Mol. Pharmacol. 5:49–59.

    PubMed  CAS  Google Scholar 

  • Fitch, C.D., Chevli, R., Banyal, H.S., Phillips, G., Pfaller, M.A., and Krogstad, D.J., 1982, Lysis of Plasmodium falciparum by ferriprotoporphyrin IX and a chloroquinine — ferriprotoporphyrin IX complex, Antimkrob. Agents Chemother. 21:819–822.

    CAS  Google Scholar 

  • Flynn, I.W., and Bowman, I.B.R., 1969, Further studies on the mode of action of arsenicals on trypanosome pyruvate kinase, Trans. R. Soc. Trop. Med. Hyg. 63:121.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, L.G., and Page, J.E., 1943, A study of the excretion of organic antimonials using a polargraphic procedure, Biochem. J. 37:198.

    PubMed  CAS  Google Scholar 

  • Gutteridge, W.D., and Coombs, G.H., 1977, Biochemistry of Parasitic Protozoa, pp. 34–42, University Park Press, Baltimore.

    Google Scholar 

  • Gutteridge, W.E., and Trigg, P.I., 1971, Action of pyrimethamine and related drugs against Plasmodium knowlesi in vitro, Parasitology 62:431–444.

    Article  PubMed  CAS  Google Scholar 

  • Hawking, F., 1963, Chemotherapy of anaplasmosis, in: Experimental Chemotherapy (R. J. Schnitzer and F. Hawking, eds.), pp. 633–639, Academic Press, New York.

    Google Scholar 

  • Hentzer, L, and Kobayasi, T., 1977, The ultrastructural changes of Leishmania tropica after treatment with pentamidine, Ann. Trop. Med. Parasitol. 71:157–166.

    PubMed  CAS  Google Scholar 

  • Hitchings, G.H., 1971, Folate antagonists as antibacterial and antiprotozoal agents, Part VI, Present status and future prospects for chemotherapy with folate antagonists, Anns. N.Y. Acad. Sci. 186:444–451.

    Article  CAS  Google Scholar 

  • Hitchings, G.H., and Burchall, J.J., 1965, Inhibition of folate biosynthesis and function as a basis for chemotherapy, Adv. Enzymol. 27:417–468.

    PubMed  CAS  Google Scholar 

  • Homewood, C.A., Warhurst, D.C., Peters, W., and Baggaley, V.C., 1972, Lysosomes, pH, and the antimalarial action of chloroquine, Nature (Lond.) 235:50–52.

    Article  CAS  Google Scholar 

  • Horton-Smith, C., and Boyland, E., 1946, Sulphonamides in the treatment of caecal coccidiosis of chickens, Br.J. Pharmacol. 1:139–152.

    CAS  Google Scholar 

  • Ings, R.M.J., McFadzean, J.A., and Ormerod, W.E., 1974, The mode of action of metronidazole in Trichomonas vaginalis and other micro-organisms, Biochem. Pharmacol. 23:1421–1429.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, T.A., Buhs, R.P., Rosegay, A., Carlin, J., Van den Huevel, W.J.A., and Wolf, F.J., 1978, Identification of 6-amino-9-(2-chloro-6-fluorobenzyl)purine-l-N-oxide, a urinary metabolite of 6-amino-9-(2-chloro-6-fluorobenzyl) purine, MK-3O2, arprinocid, Fed. Proc. 37:813

    Google Scholar 

  • James, S., 1980, Thiamine uptake in isolated schizoats of Eimeria tenella and the inhibitory effects of amprolium, Parasitology 80:313–322.

    Article  PubMed  CAS  Google Scholar 

  • Joyner, L.P., 1960, The relationship between toxicity and coccidiostatic efficacy of pyrimethamine and sulphonamides and their relative reversal by folic acid, Res. Vet. Sci. 1:2–9.

    CAS  Google Scholar 

  • Joyner, L.P., and Kendall, S.B., 1956, Synergism in the chemotherapy of Eimeria tenella, Nature (Lond.) 176:975.

    Article  Google Scholar 

  • Knight, R.C., Skolimowski, I.M., and Edwards, D.I., 1978, The interaction of reduced metronidazole with DNA, Biochem. Pharmacol. 27:2089–2093.

    Article  PubMed  CAS  Google Scholar 

  • Krenitsky, T.A., Koszalka, G.W., Tuttle, J.V., Adamczyk, D.L., Elion, G.B., and Marr, J.J., 1980, in: Purine Metabolism in Man — III, Part B (A. Rapado and R. W. E. Watts, eds.), pp. 7–12, Plenum, New York.

    Google Scholar 

  • Kuttler, K.L., 1983, Influence of a second anaplasma exposure on the success of treatment to eliminate anaplasma carrier infections in cattle, Am. J. Vet. Res. 44:882–883.

    PubMed  CAS  Google Scholar 

  • LaRusso, N.F., Tomasz, M., Muller, M., and Lipman, R., 1977, Interaction of metronidazole with nucleic acids in vitro, Mol. Pharmacol. 13:872–882.

    PubMed  CAS  Google Scholar 

  • Latter, V.S., and Wilson, R.G., 1979, Factors influencing the assessment of anticoccidial activity in cell culture, Parasitology 79:169–175.

    Article  PubMed  CAS  Google Scholar 

  • Leon, W., Brun, R., and Krassner, S.M., 1977, Effect of Berenil on growth, mitochondrial DNA, and respiration of Leishmania tarentolae promastigotes, J. Protozool. 24:444–448.

    PubMed  CAS  Google Scholar 

  • Lindmark, D.G., and Muller, M., 1976, Antitrichomonad action, mutagenicity, and reduction of metronidazole and other nitroimidazoles, Antimicrob. Agents Chemother. 10:476–482.

    PubMed  CAS  Google Scholar 

  • Lippe, C., 1968, Effects of Amphotericin B on thiourea permeability of phospholipid and cholesterol bilayer membranes, J. Mol. Biol. 35:635–637.

    Article  PubMed  CAS  Google Scholar 

  • Looker, D.L., Berens, R.L., and Marr, J.J., 1984, Effects of pyrazolopyrimidines on purine and pyrimidine metabolism in Leishmania donovani, J. Cell. Biochem. (Suppl.) 7A:16.

    Google Scholar 

  • Lux, R.E., 1954, The chemotherapy of Eimeria tenella: 1-diamino-pyrimidines and dihydrotriazines, Antibiot. Chemother. 4:971–977.

    CAS  Google Scholar 

  • Machamer, C.E., and Cresswell, P., 1984, Monensin prevents terminal glycosylation of the N-and O-linked oligosaccharides of the HLA-DR-associated invarient chain and inhibits its dissociation from the α — βchain complex, Proc. Natl. Acad. Sci. U.S.A. 81:1287–1291.

    Article  PubMed  CAS  Google Scholar 

  • Madjar, J.-J., Nielsen-Smith, K., Frahm, M., and Roufa, D.J., 1982, Emetine resistance in Chinese hamster ovary cells is associated with an altered ribosomal protein S14 mRNA, Proc. Natl. Acad. Sct. U.S.A. 79:1003–1007.

    Article  CAS  Google Scholar 

  • Marr, J.J., and Berens, R.L., 1977, Antileishmanial effect of allopurinol II. Relationship of adenine metabolism in Leishmanial species to the action of allopurinol, J. Infect. Dis. 136:724–732.

    Article  PubMed  CAS  Google Scholar 

  • Marr, J.J., Berens, R.L., and Nelson, D.J., Purine metabolism in Leishmania donovani and Leishmania bratiliensis, 1978, Biochem. Biophys. Acta 544:360–371.

    Article  PubMed  CAS  Google Scholar 

  • McCalla, D.R., 1983, Mutagenicity of nitrofuron derivatives, Rev. Environ. Mutagen 5:745–765.

    Article  CAS  Google Scholar 

  • Nakamichi, N., Rhoads, D.D., and Roufa, D.J., 1983, The Chinese hamster cell emetine resistance gene. Analysis of cDNA and genomic sequences encoding ribosomal protein S14, J. Biol. Chem. 258:13236–13242.

    PubMed  CAS  Google Scholar 

  • Nelson, D.J., LaFon, S.W., Tuttle, J.V., Miller, W.H., Miller, R.L., Krenitsky, T.A., Elion, G.B., Berens, R.L., and Marr, J.J., 1979a, Allopurinol ribonucleoside as an antileishmanial agent, J. Biol. Chem. 25:11544–11549.

    Google Scholar 

  • Nelson, D.J., Bugge, C.J.L., Elion, G.B., Berens, R.L., and Marr, J.J., 1979b, Metabolism of pyrazolo [3,4-d]pyrimidines in Leishmania braziliensis and L. donovani I. Allopurinol, oxipurinol, and 4-aminopyrazolo[3,4-dpyrimidine, J. Biol. Chem. 254:3959–3964.

    PubMed  CAS  Google Scholar 

  • Polin, D., Wynosky, E.R., and Porter, C.C., 1963, In vivo absorption of amprolium and its competition with thiamine, Proc. Soc. Exp. Biol. Med. 114:273–277.

    PubMed  CAS  Google Scholar 

  • Rogers, E.F., Clark, R.L., Becker, H.J., Pessolano, A.A., Leanza, W.J., McManus, E.C., Andriuli, F.J., and Cuckler, A.C., 1964, Antiparasitic drugs: V. Anticoccidial activity of 4-amino-2-ethox-ybenzoic acid and related compounds, Proc. Exp. Biol. Med. 117:488–492.

    CAS  Google Scholar 

  • Schmidt, G., Hirt, R., and Fisher, R., 1969, Babesicidal effect of basically substituted carbanilides. I: Activity against Babesia rodaini in mice, Res. Vet. Sci. 10:530–533.

    PubMed  CAS  Google Scholar 

  • Sharma, S.K., and Quastel, J.H., 1965, Transport and metabolism of thiamine in rat brain cortex in vitro, Biochem. J. 94:790–800.

    PubMed  CAS  Google Scholar 

  • Skelton, F.S., Bowman, C.M., Porter, T.H., and Folkers, K., 1971, New quinoline quinone inhibitors of mitochondrial reductase systems and reversal by coenzyme Q, Biochem. Biophys. Rev. Commun. 43:102–107.

    Article  CAS  Google Scholar 

  • Slaughter, R.S., and Barnes, E.M., Jr., 1979, Hypoxanthine transport by Chinese hamster lung fibroblasts: Kinetics and inhibition by nucleosides, Arch. Biochem. Biophys. 197:349–355.

    Article  PubMed  CAS  Google Scholar 

  • Spector, T., Jones, T.E., and Elion, G.B., 1979, Specificity of adenylosuccinate synthetase and adenylosuccinate lyase from Leishmania donovani, J. Biol. Chem. 254:8422–8425.

    PubMed  CAS  Google Scholar 

  • Spector, T., Jones, T.E., LaFon, S.W., and Nelson, D.J., 1984, Monophosphates of formycin B and allopurinol riboside. Interaction with leishmanial and mammalian succino-AMP lyase and GMP reductase, Biochem. Pharm. 33:1611–1617.

    Article  PubMed  CAS  Google Scholar 

  • Trager, W., 1967, The different developing intracellularly and extracellularly in vitro, Am. J. Trop. Med. Hyg. 16:15–18.

    PubMed  CAS  Google Scholar 

  • Wang, C.C., 1975, Studies of the mitochondria from Eimeria tenella and inhibition of electron transport by quinolone coccidiostats, Biochim. Biophys. Acta 396:210–219.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C.C., 1976, Inhibition of the respiration of Eimeria tenella by quinolone coccidiostats, Biochem. Pharmacol. 25:343–349.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C.C., 1978, Biochemical and nutritional aspects of coccidia, in: Avian Coccidiosis (P. L. Long, K. N. Boorman, and B. M. Freeman, eds.), pp. 135–184, British Poultry Science, Ltd., Edinburgh.

    Google Scholar 

  • Wang, C.C., 1982, Biochemistry and physiology of coccidia, in: The Biology of the Coccidia, (P. L. Long, ed.), pp. 167–228, University Park Press, Baltimore.

    Google Scholar 

  • Wang, C.C., 1984, Parasite enzymes as potential targets for antiparasitic chemotherapy, J. Med. Chem. 27:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C.C., and Simashkevich, P.M., 1980, A comparative study of the biological activities of arprinocid and arprinocid 1-N-oxide, Mol. Biochem. Parasitol. 1:335–345.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C.C., Stotish, R.L., and Poe, M., 1975, Dihydrofolate reductase from Eimeria tenella: Rationalization of the chemotherapeutic efficacy of pyrimethamine, J. Protozool. 22:564–568.

    PubMed  CAS  Google Scholar 

  • Wang, C.C., Simashkevich, P.M., and Stotish, R.L., 1979a, Mode of anticoccidial action of arprinocid, Biochem. Pharmacol. 28:2241–2248.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C.C., Tolman, R.L., Simashkevich, P.M., and Stotish, R.L., 1979b, Arprinocid, an inhibitor of hypoxanthine-guanine transport, Biochem. Pharmacol. 28:2241–2248.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C.C., Simashkevich, P.M., and Fan, S.S., 1981, The mechanism of anticoccidial action of arprinocid-1-N-oxide, J. Parasitol. 67:137–149.

    Article  PubMed  CAS  Google Scholar 

  • Warhurst, D.C., and Thomas, S.C., 1978, The chemotherapy of rodent malaria, XXXI. Ann. Trop. Med. Parasitol. 72:203–211.

    PubMed  CAS  Google Scholar 

  • Warren, E.W., 1968, Vitamin requirements of the coccidia of the chicken, Parasitology 58:137–148.

    Article  PubMed  CAS  Google Scholar 

  • Wasmuth, J.J., Hill, J.M., and Vock, L.S., 1980, Biochemical and genetic evidence for a new class of emetine-resistant Chinese hamster cells with alterations in the protein biosynthesis machinery, Somat. Cell Genet. 6:495–576.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, J., Macadam, R.F., and Dixon, H., 1975, Drug induced lesions in trypanosome fine structure: A guide to modes of trypanocidal action, Biochem. Pharmacol. 24:147–151.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, F.J., Steffens, J.J., Alvaro, R.F., and Jacob, T.A., 1978, Microsomal conversion of MK-302, arprinocid [6-amino-9-(2-chloro-6-fluorobenzyl) purine] to 6-amino-9-(2-chloro-6-fluorobenzyl)purine-1-N-oxide by liver microsomes from the chicken and the dog and to 2-chloro-6-fluorobenzyl alcohol by liver microsomes from the rat and mouse, Fed. Proc. 37:814.

    Google Scholar 

  • Yayon, A., and Ginsburg, H., 1983, Chloroquine inhibits the degradation of endocytic vesicles in human malaria parasites, Cell Biol. Int. Rep. 7:895.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Looker, D.L., Marr, J.J., Stotish, R.L. (1986). Modes of Action of Antiprotozoal Agents. In: Campbell, W.C., Rew, R.S. (eds) Chemotherapy of Parasitic Diseases. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1233-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1233-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1235-2

  • Online ISBN: 978-1-4684-1233-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics