Skip to main content

Evaluation of the Probability of Detection of Mineral Deposits

  • Chapter
Designing Optimal Strategies for Mineral Exploration
  • 110 Accesses

Abstract

The principal purpose of field programs is the acquisition of information which will lead to the detection of mineral deposits. There are two types of approach to the problem of detection, namely, the direct and indirect methods, which are commonly used simultaneously or sequentially to best advantage. Table 2.1 summarizes the main aspects of the two paths with respect to the types of target sought and detection environment, as well as the methodology and procedures involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Selected Readings

Detection: General Topics

  1. BIRDSALL, T. G., 1965, The theory of signal detectability in Information Theory in Psychology, pp. 391–402, Free Press, Glencoe, Illinois.

    Google Scholar 

  2. CRIBB, J. L., and VICKERS, I. R., 1973, Experience with transformation of aeromagnetic data to the Pole, Bull. Austr. Soc. Expl. Geophys. 4 (September), 1–8.

    Article  Google Scholar 

  3. CUMING, J. D., and WICKLUND, A. P., 1978, Diamond Drill Handbook, J. K. Smit, Toronto, Canada.

    Google Scholar 

  4. ELLIOT, I. L., and FLETCHER, W. K. (Ed.), 1975, Geochemical Exploration 1974, Elsevier, Amsterdam.

    Google Scholar 

  5. GREGORY, A. F., 1967, Remote sensing in the search for metallic ores: A review of current practices and future potential, Geol. Surv. Can. Econ. Geol. Rep. 26, pp. 511–526.

    Google Scholar 

  6. GOETZ, A. F. H., ROCK, B. N., and GOWAN, L. C., 1983, Remote sensing for exploration: An overview, Econ. Geol. 78, 573–590.

    Article  Google Scholar 

  7. GREENWOOD, J. E. W., 1965, Air photographs in economic mineral exploration, Geol. Surv. Can. Pap. 65–6.

    Google Scholar 

  8. HENDERSON, R. G., and ZIETZ, I., 1949, The upward continuation of anomalies in total magnetic intensity fields, Geophysics 14, 517–533.

    Article  Google Scholar 

  9. KUZWART, M., and BOHMER, M., 1978, Prospecting and Exploration of Mineral Deposits, Elsevier, Amsterdam.

    Google Scholar 

  10. LEE, Y. W., 1960, Statistical Theory of Communication, Wiley, New York.

    Google Scholar 

  11. LEVINSON, A. A., 1974, Introduction to Exploration Geochemistry, Appl. Publ. Maywood, Illinois.

    Google Scholar 

  12. PARASNIS, D. S., 1974, Mining Geophysics, Elsevier, Amsterdam.

    Google Scholar 

  13. PATERSON, N. R., 1971, Airborne electromagnetic methods as applied to the search for sulfide deposits, Can. Inst. Min. Metall. Bull. 64 (705), 29–38.

    Google Scholar 

  14. PEMBERTON, R. H., 1962, Airborne electromagnetics in review, Geophysics 27, 691–713.

    Article  Google Scholar 

  15. PETERS, W. C., 1978, Exploration and Mining Geology, Chap. 8, Wiley, New York.

    Google Scholar 

  16. RAISBECK, G., 1963, Information Theory: An Introduction for Scientists and Engineers; MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  17. REEDMAN, J. H., 1979, Techniques in Mineral Exploration, Applied Science Publishers, London.

    Book  Google Scholar 

  18. ROSENBERG, P., 1971, Resolution, detectability, and recognizability, Photogramm. Eng 37, 1255–1258.

    Google Scholar 

  19. SLICHTER, L. B., 1955, Geophysics applied to prospecting for ores, Econ. Geol. Jubilee Volume 50, 885–969.

    Google Scholar 

  20. SPECTOR, A., 1971, Aeromagnetic map interpretation with the aid of the digital computer, Can. Inst. Min. Metall. Bull. 64 (711), 27–34.

    Google Scholar 

  21. ZURFLUEH, E. G., 1967, Applications of two-dimensional linear wavelength filtering, Geophysics 32, 1015–1033.

    Article  Google Scholar 

Statistical Modeling of Geometric Parameters of Ore Deposits

  1. AGTERBERG, F. P., 1974, Geomathematics, Chaps. 7, 11, and 15, Elsevier, Amsterdam.

    Google Scholar 

  2. AITCHISON, J., and BROWN, J. A. C., 1966, The lognormal distribution with special references to its use in economics; Cambridge University Press, Cambridge.

    Google Scholar 

  3. DAVIS, J. C., 1973, Statistics and Data Analysis in Geology, Wiley, New York.

    Google Scholar 

  4. DE GEOFFROY, J., and WIGNALL, T. K., 1973, Statistical models for porphyry Cu—Mo deposits of the Cordillera Belt of North and South America, Can. Inst. Min. Metall. Bull. 66 (735), 84–90.

    Google Scholar 

  5. JOHNSON, N. I., and KOTZ, S., 1970, Continuous Univariate Distributions, Vol. 2, Houghton-Mifflin, Boston.

    Google Scholar 

  6. KOCH, G. S., and LINK, R. F., 1970, Statistical Analysis of Geological Data, Wiley, New York.

    Google Scholar 

  7. KRUMBEIN, W. C., and GRAYBILL, F. A., 1965, Introduction to Statistical Models in Geology, McGraw-Hill, New York.

    Google Scholar 

  8. WALPOLE, R. E., 1974, Introduction to Statistics, Macmillan, New York.

    Google Scholar 

Evaluation of the Probability of Detection of Ore Deposits

  1. AGOCS, W. B., 1955, Line spacing effect and determination of optimum spacing illustrated by Marmora, Ontario, magnetic anomaly, Geophysics 20 (4), 871–885.

    Article  Google Scholar 

  2. CELASUN, M., 1964, The allocation of funds to reconnaissance drilling programs, Q. Col. Sch. Mines 59 (4), 169–186.

    Google Scholar 

  3. CHUNG, C. F., 1981, Application of the Buffon needle problem and its extensions to parallel line search sampling schemes, J. Math. Geol. 13 (5), 371–390.

    Article  Google Scholar 

  4. DREW, L. J., 1967, Grid-drilling exploration and its application to the search for petroleum, Econ. Geol. 62, 698–710.

    Article  Google Scholar 

  5. DREW, L. J., 1979, Pattern drilling exploration: Optimum pattern types and hole spacing when searching for elliptical targets, J. Math. Geol. 11 (2), 223–254.

    Article  Google Scholar 

  6. GRIFFITHS, J. C., 1966, Grid spacing and success ratios in exploration for natural resources, Mineral Industry Experimental Station, Pennsylvania State University, Special Publication No 1.

    Google Scholar 

  7. KENDALL, M. G., and MORAN, P. A. P., 1963, Geometrical Probability, Chas. Griffin, London.

    Google Scholar 

  8. MARRIOT, F. H. C., 1969, Associated directions, Biometrics 25 (4), 775–776.

    Article  Google Scholar 

  9. McCAMMON, R. B., 1977, Target intersection probabilities for parallel lines and continuous grid types of search, J. Math. Geol. 9 (4), 369–382.

    Article  Google Scholar 

  10. MICKEY, M. R., and JESPERSEN, H. W., 1954, Some statistical problems of uranium exploration, U. S. Atomic Energy Commission Report RME-3105.

    Google Scholar 

  11. SAVINSKII, I. D., 1965, Probability Tables for Locating Elliptical Underground Masses with a Rectangular Grid, Consultants Bureau, New York.

    Google Scholar 

  12. SCHUENMEYER, J. H., and DREW, L. J., 1977, An exploratory drilling exhaustion sequence plot programme, Comput. Geosci. 3 (4), 617–632.

    Article  Google Scholar 

  13. SHURYGIN, A. M., 1976, Discovery of deposits of given size in boreholes with preselected probability, J. Math. Geol. 8 (1), 85–88.

    Article  Google Scholar 

  14. SHURYGIN, A. M., 1976, The probability of finding deposits and some optimal search grids, J. Math. Geol. 8 (3), 323–330.

    Article  Google Scholar 

  15. SINCLAIR, A. J., 1975, Some considerations regarding grid orientation and sample spacing, in Geochemical Exploration 1974, pp. 133–140, Elsevier, Amsterdam.

    Google Scholar 

  16. SINGER, D. A., and WICKMAN, F. E., 1969, Probability tables for locating elliptical targets with square, rectangular and hexagonal point nets, Pennsylvania State University Mineral Industry Experimental Station, Spec. Publ. No 1–69.

    Google Scholar 

  17. SINGER, D. A., 1972, ELLIPGRID, a FORTRAN IV program for calculating the probability of success in locating elliptical targets with square, rectangular and hexagonal grids, Geocom. Programs No. 4, 1–16.

    Google Scholar 

  18. SINGER, D. A., 1975, Relative efficiencies for square and triangular grids in the search for elliptically shaped resources targets, J. Res. U. S. Geol. Surv. 3, 163–167.

    Google Scholar 

  19. SINGER, D. A., 1976, RESIN, a FORTRAN Iv program for determining the area of influence of samples or drill holes in resources target search, Comput. Geosci. 2, 249–260.

    Article  Google Scholar 

  20. SINGER, D. A., and DREW, L. J., 1976, The area of influence of an exploratory drill hole, Econ. Geol. 71, 642–647.

    Article  Google Scholar 

  21. SOLOMON, H., 1978, Geometric Probability, Soc. Ind. Appl. Math. (S. I. A.M. ), Pennsylvania.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

De Geoffroy, J.G., Wignall, T.K. (1985). Evaluation of the Probability of Detection of Mineral Deposits. In: Designing Optimal Strategies for Mineral Exploration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1230-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1230-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1232-1

  • Online ISBN: 978-1-4684-1230-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics