Invertase Activity in Entrapped Yeast Cells

  • G. Aykut
  • V. N. Hasirci
  • N. G. Alaeddinoğlu
Part of the NATO ASI Series book series (NSSA, volume 87)


The immobilization of intact microbial cells has recently attracted attention because of their potential for industrial applications. This interest stems mainly from the fact that immobilized whole cells favorably combine the advantages inherent in the use of immobilized enzymes with those of microbial fermentations. For instance enzyme extraction and purification are eliminated, higher yields of enzymes are obtained, retention of structural and confirmational integrity is achieved, greater potential is offered, for multistep processes, and enzyme stability is increased.6, 7, 8, 12, 25, 26


Immobilize Enzyme Sucrose Concentration Immobilize Cell Free Cell Invertase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chibata, I., Tosa, T., Sato, T. Immobilized Aspartase containing microbial cells: Preparation and Enzymatic Properties. App. Microbiol. 27(5): 878–885 (1974).Google Scholar
  2. 2.
    Chibata, I., Tosa, T., Sato, T. Production of L-aspartic acid by microbial cells entrapped in polyacrylamide gels. Methods in Enzymology, Vol. 44, Academic Press Inc., New York (1976).Google Scholar
  3. 3.
    Chibata, I. Immobilized microbial cells with polyacrylamide gel and carrageenan and their industrial applications, Chapter 13 in immobilized microbial cells, Venkatsubramanian, K. Ed., ACS Symposium Series 106, ACS, Washington, D.C (1979).Google Scholar
  4. 4.
    D’Souza, S.F., Nadkarni, G.B. Continious inversion of sucrose by gel entrapped yeast cells. Enzyme Microb. Technol. 2: 217–222 (1980).CrossRefGoogle Scholar
  5. 5.
    D’Souza, S.F., Nadkarni, G.B. Continious conversion of sucrose to fructose and gluconic acid by immobilized yeast cell multienzyme complex. Biotechnol. Bioeng. 22: 2179–2189 (1980)CrossRefGoogle Scholar
  6. 6.
    Durand, G., Navarro, J.M. Immobilized microbial cells. Process Biochem. 13(9): 14–23 (1978).Google Scholar
  7. 7.
    Evrimler, M., Sonaer, H., Çağlar, A. Poliakrilamid Jelinde tutuklanmiş Acetobacter suboxydans. Ulusal Biyomiihendislik Kongre Tebligleri, Lider Matbaacılık, Ankara (1981).Google Scholar
  8. 8.
    Fukui, S., Tanaka, A. Immobilized microbial cells. Ann. Rev. Microbiol. 36: 145–172 (1982).CrossRefGoogle Scholar
  9. 9.
    Hasırcı, V.N. Synthesis and characterization of PVNO and PVNO-PVP hydrogels. Biomaterials. 2: 8–12 (1981).Google Scholar
  10. 10.
    Isaeve, V.S., Kolpakchi, A.P. Fixation of brewer’s yeast to polymer materials. Prikl. Biokhim Mikrobiol. 12(6): 866–870 (1976).Google Scholar
  11. 11.
    Kawashima, K., Umeda, K. Immobilization of enzymes by radiopolymerization of acrylamide. Biotechnol. Bioeng. 16:609–621 (1974).PubMedCrossRefGoogle Scholar
  12. 12.
    Kennedy, J.F., Barker, S.A., Humphreys, J.D. Microbial cells living immobilized on metal hydroxides. Nature. 261: 242–244 (1976).PubMedCrossRefGoogle Scholar
  13. 13.
    Kimura, A. Research Institute for Food Science, Kyoto Univ., Uji, Kyoto 611, Japan. Personal Communication (1983).Google Scholar
  14. 14.
    Navarro, J.M. Fermentation en continue a l’aide de microorganismes fixès. Thesis Doct. Ing. Univ. Toulouse (1975).Google Scholar
  15. 15.
    Onyezili, F.N., Onitiri, A.C. Immobilization of invertase on modified nylon tubes. Anal. Biochem 113: 203–206 (1981)PubMedCrossRefGoogle Scholar
  16. 16.
    Rembaum, S.P., Yen, S.P.S., Ingram, M., Newton, J.F., Hu, C.L., Frasher, G.W., Barbour, B.H. Platelet adhesion to heparin-bonded and heparin-free surfaces. Biomat., Med. Dev., Artificial Organs 1(1): 99–119 (1973)Google Scholar
  17. 17.
    Samejima, H., Kimura, K., Ado, Y., Suzuki, Y., Tadokoro, T. Regeneration of ATP by immobilized microbial cells and its utilization for synthesis of nucleotides. Enzyme Eng. 4: 237–244 (1978).CrossRefGoogle Scholar
  18. 18.
    Sato, T., Nishida, Y., Tasa, T., Chibata, I. Immobilization of Escherichia coli cells containing aspartase activity with K-carrageenan. Biochem. Biophys. Acta. 570: 179–186 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    Sidney, J.G. Physical Techniques: Entrapment in immobilized enzyme preparation and engineering techniques, Noyes Data Corp. New Jersey (1974).Google Scholar
  20. 20.
    Sidney, C.P., Kaplan, N.O. Covalent coupling in Methods in Enzymology (Section II.A), Vol.44, Mosbach, K. Ed., Academic Press Inc., New York (1976).Google Scholar
  21. 21.
    Sidney, C.P., Kaplan, N.O. Adsorption in Methods in Enzymology (section II, B), Vol.44, Mosbach, K. Ed., Academic Press Inc., New York (1976).Google Scholar
  22. 22.
    Sidney, C.P., Kaplan, N.O. Entrapment and related techniques in Methods in Enzymology (section II.C), Vol. 44, Mosbach, K. Ed., Academic Press, Inc., New York (1976).Google Scholar
  23. 23.
    Smiley, K.L., Strandberg, G.W. Immobilized enzymes, Weast, R.C. Ed., CRC Press, Ohio, 13–38 (1973).Google Scholar
  24. 24.
    Toda, K., Shoda, M. Sucrose inversion by immobilized yeast cells in a complete mixing reactor, Biotechnol. Bioeng. 17: 481–497 (1975).CrossRefGoogle Scholar
  25. 25.
    Vandamme, E.J. Immobilized microbial cells as catalysts, Chem. and Ind. 24: 1070–1072 (1976).Google Scholar
  26. 26.
    Vieth, W.R., Venkatsubramanian, K. Immobilized microbial cells in complex biocatalysis, Chapter I in Immobilized Microbial Cells, Venkatsubramanian, K. Ed., ACS Symposium Series 106, ACS, Washington, D.C. (1979).Google Scholar
  27. 27.
    Wayne, P.H., Jr. Introduction to Immobilized enzymes. Chapter I in Immobilized Enzymes for Food Processing, Wayne, P.H., Jr. Ed., CRS Press, Inc. Florida (1980).Google Scholar
  28. 28.
    Wharton, D.C and McCarty, R.E. Experiments in Biochemistry. p. 313, The Macmillan Company, New York (1972).Google Scholar
  29. 29.
    Zaborsky, O. Covalent attachment to water-insoluble functionalized polymers. Chapter 2 in Immobilized Enzymes, Weast, R.C. Ed., CRS Press, Ohio (1973).Google Scholar
  30. 30.
    Zaborsky, O. Properties of covalently bonded water-insoluble enzyme-polymer conjugates. Chapter 2 in Immobilized Enzymes. Weast, R.C. Ed., CRC Press, Ohio (1973)Google Scholar
  31. 31.
    Zaborsky, O. Adsorption. Chapter 5 in Immobilized Enzymes, Weast, R.C. Ed., CRC Press, Ohio (1973).Google Scholar
  32. 32.
    Zaborsky, O., Entrapment within cross-linked polymers. Chapter 6 in Immobilized Enzymes, Weast, R.C. Ed., CRC Press, Ohio (1973).Google Scholar
  33. 33.
    Zaborsky, O. Microencapsulation. Chapter 7 in Immobilized Enzymes, Weast, R.C. Ed., CRC Press, Ohio (1973).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • G. Aykut
    • 1
  • V. N. Hasirci
    • 1
  • N. G. Alaeddinoğlu
    • 1
  1. 1.Dept.of Biological SciencesMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations