Photochemistry of Porphyrins and Bile Pigments in Homogeneous Solution

  • T. G. Truscott
  • Antony F. McDonagh
  • David A. Lightner
  • C. Lambert
  • M. A. J. Rodgers
  • G. Jori
  • E. Reddi
  • J. D. Spikes
  • Ralph L. Brookfield
  • Bobby Redmond
  • Edward J. Land
  • T. George Truscott
  • Garry R. Buettner
  • Roy Pottier
  • James Kennedy


Porphyrins and bile pigment are examples of tetrapyrrolic pigments and this group of pigments are the most widely occurring coloured materials in nature. Porphyrin structures are based on the porphin nucleus with side chains substituted on the various peripheral positions. The basic structures of the porphyrins related to haem biosynthesis and of haematoporphyrin (Hp) and related porphyrins which are of importance in cancer photo-chemotherapy are shown in Figure 1. It was first demonstrated by Meyer-Betz in 1913 that porphyrins are related to photodynamic activity in man and it is now established that the photosensitivity associated with various porphyric diseases is due to the presence of excess porphyrin in the skin. The porphyrins which cause porphyria arise by a disfunction of haem biosynthesis and vary in structure depending on the particular step in the biosynthetic pathway at which the enzymic disfunction occurs. The so-called ‘Hp Derivative’ (HpD) is currently of interest in the photochemotherapy of some tumours. Current views of the nature of the active component of HpD is that it consists of a substantial number of Hp molecules linked via ether bridges with the overall structure that of a folded molecule. It is presumed that such a macromolecule can transfer one Hp or possibly one hydroxyethylvinyldeuteroporphyrin (HVD) entity at a time on interaction with a tumour cell. It is also possible that Hp and HVD are in equilibrium with protoporphyrin (pp) and even deuteroporphyrin (dp)1 in the tumour.


Human Serum Albumin Singlet Oxygen Dimethyl Ester Neonatal Jaundice Laser Flash Photolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Tsutsui, C. Carrano and E.A. Tsutsui Tumor localisers: Porphyrins and Related Compounds (Unusual Metalloporphyrins) Ann. N.Y. Acad. Sci., 244:675 (1975).CrossRefGoogle Scholar
  2. 2.
    W.I. White “The Porphyrins” (Ed. D. Dolphin) Acad. Press, N.Y. (1978) 303.Google Scholar
  3. 3.
    S.B. Brown Aggregation of Porphyrins and Photosensitisation Porphyrin Workshop Abstracts July 1984 - Wayne State Univ. (Ed. D. Kessel).Google Scholar
  4. 4.
    A. Blum and L.I. Grossweiner Singlet Oxygen Generation by Hematoporphyrin IX, Uroporphyrin I and Hematoporphyrin Derivative at 546 nm in Phosphate Buffer and in the Presence of Egg Phosphatidylcholine Liposomes Photochem. Photobiol. (1984) - In press.Google Scholar
  5. 5.
    R.F. Pasternack, P.R. Huber, P. Boyd, G. Engasser, L. Francesconi, E. Gibbs, P. Fasella, G.C. Venturo and L. de C. Hinds. On the Aggregation of Meso-Substituted Water-Soluble Porphyrins J. Amer. Chem. Soc., 94:4511 (1972).CrossRefGoogle Scholar
  6. 6.
    P.G. Seybold and M. Gouterman. Porphyrins XIII. Fluorescence Spectra and Quantum Yields. J. Mol. Spectroscopy, 31:1 (1969).CrossRefGoogle Scholar
  7. 7.
    R.S. Becker and J.B. Allison Metalloporphyrins. Electronic Spectra and Nature of Pertubations. I. Transition Metal Ion Derivatives J. Phys. Chem., 67:2662 (1963).Google Scholar
  8. 8.
    M. Gouterman, F.P. Schwarz, P.D. Smith and D. Dolphin Porphyrins. XXVII. Spin-orbit Coupling and Luminescence of Group IV Complexes J. Chem. Phys., 59:676 (1973).CrossRefGoogle Scholar
  9. 9.
    G.J. Smith Effects of Aggregation on the Fluorescence and Triplet State Yield of Hematoporphyrin Photochem. Photobiol. (1984/85) - In press.Google Scholar
  10. 10.
    A. Andreoni and R. Cubeddu Fluorescence Properties of HpD and its Components in: “Porphyrins in Tumour Phototherapy”, A. Andreoni and R. Cubeddu, Ed., Plenum Press, N.Y. (1984) 11.CrossRefGoogle Scholar
  11. 11.
    A. Andreoni and R. Cubeddu Excited State Properties of Photofrin II in Different Solvents Porphyrin Workshop Abstracts July 1984 - Wayne State Univ. (Ed. D. Kessel).Google Scholar
  12. 12.
    F. Ricchelli and L.I. Grossweiner Properties of a New State of Hematoporphyrin in Dilute Aqueous Solution Photochem. Photobiol. (1984) - In press.Google Scholar
  13. 13.
    S.J. Chantrell, C.A. McAuliffe, R.W. Munn, A.C. Pratt and E.J. Land. Excited States of Protoporphyrin IX Dimethyl Ester: Reaction of the Triplet with Carotenoids J. Chem. Soc., Faraday I, 73:858 (1977).CrossRefGoogle Scholar
  14. 14.
    R.S. Sinclair, D. Tait and T.G. Truscott Triplet States of Protoporphyrin IX and Protoporphyrin IX Dimethyl Ester J. Chem. Soc., Faraday I, 76:417 (1980).CrossRefGoogle Scholar
  15. 15.
    R. Bonnett, A.A. Charalambides, E.J. Land, R.S. Sinclair, D. Tait and T.G. Truscott. Triplet States of Porphyrin Esters J. Chem. Soc., Faraday I, 76:852 (1980).CrossRefGoogle Scholar
  16. 16.
    R. Bonnett, R.J. Ridge, E.J. Land, R.S. Sinclair, D. Tait and T.G. Truscott Pulsed Irradiation of Water-Soluble Porphyrins J. Chem. Soc., Faraday I, 78:127 (1982).CrossRefGoogle Scholar
  17. 17.
    E. Reddi, G. Jori, M.A.J. Rodgers and J.D. Spikes Flash Photolysis Studies of Hemato-and Copro-Porphyrins in Homogeneous and Microheterogeneous Aqueous Dispersions Photochem. Photobiol., 38:639 (1983).CrossRefGoogle Scholar
  18. 18.
    D. Tait Pulsed Irradiation of Porphyrins and Related Molecules Ph.D. Thesis 1980 (CNAA) p.119–128.Google Scholar
  19. 19.
    E. Reddi, C. Lambert, M.A.J. Rodgers and G. Jori Photosensitizing Properties of Porphyrins in Aqueous and Micellar Systems 9th Int. Congress on Photobiology, July 1984, Abstract TPM-39.Google Scholar
  20. 20.
    M. Craw, R. Redmond and T.G. Truscott Laser Flash Photolysis of Haematoporphyrins in some Homogeneous and Heterogeneous Environments J. Chem. Soc., Faraday I (1984) - In press.Google Scholar
  21. 21.
    A. Blum and L.I. Grossweiner Singlet Oxygen Generation by Hematoporphyrin IX, Uroporphyrin I and Hematoporphyrin Derivative at 546 nm in Phosphate Buffer and in the Presence of Egg Phosphatidylcholine Liposomes Photochem. Photobiol. (1984) - In press.Google Scholar
  22. 22.
    I. Kraljic, S. El Mohsni and M. Arvis A General Method for the Identification of Primary Reactions in Sensitized Photooxidations Photochem. Photobiol., 27:531 (1978).CrossRefGoogle Scholar
  23. 23.
    I. Kraljic and S. E Mohsni A New Method for the Detection of Singlet Oxygen in Aqueous Solutions Photochem. Photobiol., 28:577 (1978).CrossRefGoogle Scholar
  24. 24.
    L.I. Grossweiner and G.C. Goyal Binding of Hematoporphyrin Derivative to Human Serum Albumin Photochem. Photobiol., 40:1 (1984).CrossRefGoogle Scholar
  25. 25.
    E. Reddi, F. Ricchelli and G. Jori Interaction of HSA with Hematoporphyrin and its Zn2+ and Mg2+ Derivatives: Fluorescence Studies Int. J. Protein Res., 18:402 (1981).Google Scholar
  26. 26.
    J.D. Spikes Porphyrins and Related Compounds as Photodynamic Sensitizers , Ann. N.Y. Acad. Sci., 244:496 (1975).CrossRefGoogle Scholar
  27. 27.
    J.D. Spikes Photosensitizing Properties of Porphyrins in Model Cell Systems in: “Porphyrins in Tumour Phototherapy”, A. Andreoni and R. Cubeddu, ed., Plenum Press, N.Y. (1984) 51.CrossRefGoogle Scholar
  28. 28.
    L.I. Grossweiner, A.S. Patel and J.B. Grossweiner Type I and Type II Mechanisms in the Photosensitized Lysis of Phosphatidylcholine Liposomes by Hematoporphyrin Photochem. Photobiol., 36:159 (1982).CrossRefGoogle Scholar
  29. 29.
    L.I. Grossweiner and G.C. Goyal Photosensitized Lysis of Liposomes by Hematoporphyrin Derivative Photochem. Photobiol., 37:529 (1983).CrossRefGoogle Scholar
  30. 30.
    J. Moan The Photochemical Yield of Singlet Oxygen from Porphyrins in Different States of Aggregation Photochem. Photobiol., 39:445 (1984).CrossRefGoogle Scholar
  31. 31.
    E. Reddi, M.A.J. Rodgers, J.D. Spikes and G. Jori The Effect of Medium Polarity on the Hematoporphyrin-Sensitized Photooxidation of L-Tryptophan. Photochem. Photobiol. (1984) - In press.Google Scholar
  32. 32.
    C.R. Lambert The Photochemistry of Some Biological Pigments Ph.D. Thesis 1982 (CNAA) p.98.Google Scholar
  33. 33.
    T. Dubbelman, A.L. Von Steveninck and J. Von Steveninck The Haematoporphyrin Induced Photo-oxidation and Photodynamic Crosslinking of Nucleic Acids and their Constituents Biochim. Biophys. Acta, 719:47 (1982).CrossRefGoogle Scholar
  34. 34.
    S. Sandberg and I. Romslo Porphyrin-Induced Photodamage at the Cellular and Sub-Cellular Level as Related to the Solubility of the Porphyrins Clin. Chem. Acta, 109:193 (1981).CrossRefGoogle Scholar
  35. 35.
    R.J. Cremer, P.W. Perryman and D.H. Richards Influence of Light on Hyperbilirubinemia of Infants Lancet, 1:1094 (1958).Google Scholar
  36. 36.
    D.A. Lightner, W.P. Linnane III and C.E. Ahlfors Photooxygenation Products of Bilirubin in the Urine of Jaundiced Phototherapy Neonates in: “Neonatal Jaundice”, Rubaltelli and Jori, ed., Plenum Press, N.Y. (1984) p.161.Google Scholar
  37. 37.
    A.F. McDonagh Photochemistry and Photometabolism of Bilirubin IXa in: “Bilirubin Metabolism in the Newborn (II)”, Bergsma and Blondheim, ed., Excerpta Medica, Amsterdam (1976).Google Scholar
  38. 38.
    J.D. Ostrow, C.S. Berry, R.G. Knodell and J.E. Zarembo Effect of Phototherapy on Bilirubin Excretion in Man and in the Rat IbidGoogle Scholar
  39. 39.
    R.W. Sloper and T.G. Truscott Excited States of Bilirubin Photochem. Photobiol., 31:445 (1980).CrossRefGoogle Scholar
  40. 40.
    R.W. Sloper and T.G. Truscott The Quantum Yield for Bilirubin Photoisomerisation Photochem. Photobiol., 35:743 (1982).CrossRefGoogle Scholar
  41. 41.
    A.A. Lamola, J. Flores and F.H. Doleiden Quantum Yield and Equilibrium Position of the Configurational Photoisomerization of Bilirubin Bound to Human Serum Albumin Photochem. Photobiol., 35:649 (1982).CrossRefGoogle Scholar
  42. 42.
    E.J. Land The Triplet Excited State of Bilirubin Photochem. Photobiol., 24:475 (1976).CrossRefGoogle Scholar
  43. 43.
    J.F. Ennever and W.T. Speck Mechanisms of Action of Phototherapy: New Concepts in: “Neonatal Jaundice”, Rubaltelli and Jori, ed., Plenum Press, N.Y. (1984) p.187.Google Scholar
  44. 44.
    M.S. Stoll, N. Vicker, C.H. Gray and R. Bonnett Concerning the Structure of Photobilirubin II Biochem. J., 201:179 (1982).Google Scholar
  45. 45.
    K. Schaffner Solution Conformations, Photophyrins and Photochemistry of Bilirubin and Biliverdin Dimethyl Esters in: “Neonatal Jaundice”, Rubaltelli and Jori, ed., Plenum-Press, N.Y. (1984) p.125.Google Scholar
  46. 46.
    R. Pratesi, G. Agati and F. Fusi Configurational Photoisomerisation of Bilirubin In Vitro - 1. Quenching of Z4-E isomerization by Two-Wavelength Irradiations Photochem. Photobiol., 40:41 (1984).CrossRefGoogle Scholar
  47. 47.
    A.F. McDonagh Molecular Mechanisms of Phototherapy of Neonatal Jaundice in: “Neonatal Jaundice”, Rubaltelli and Jori, ed., Plenum Press, N.Y. (1984) p.173.Google Scholar
  48. 1.
    A. F. McDonagh, L. A. Palma, F. R. Trull, and D. A. Lightner, Phototherapy for neonatal jaundice. configurational isomers of bilirubin, J. Am. Chem. Soc. 104:6865 (1982).CrossRefGoogle Scholar
  49. 2.
    A. F. McDonagh and D. A. Lightner, Molecular mechanims of phototherapy for neonatal jaundice, Accounts Chem. Res. (1984). (In press)Google Scholar
  50. 3.
    A. F. McDonagh, L. A. Palma, and D. A. Lightner, Phototherapy for neonatal jaundice. Stereospecific and regioselective photoisomerization of bilirubin bound to human serum albumin and NMR characterization of intramolecularly cyclized photoproducts, J. Am. Chem. Soc. 104:6867 (1982).CrossRefGoogle Scholar
  51. 4.
    A. F. McDonagh and D. A. Lightner, Mechanism of phototherapy of neonatal jaundice. Regiospecific photoisomerization of bilirubins, in: “Optical Properties and Structure of Tetrapyrroles,” H. Sund and G. Blauer, eds., Walter de Gruyter, Berlin. (In press)Google Scholar
  52. 1).
    R.L. Juliano, Pharmacokinetics of Liposome-Encapsulated Drugs, in “Liposomes: from physical structure to therapeutic applications,” (C.G. Knight, ed.) Elsevier/North Holland Biomedical Press, Amsterdam. New York, Oxford.Google Scholar
  53. 2).
    D.C. Foyt, Comput. and Chem. 5:49 (1981).CrossRefGoogle Scholar
  54. 3).
    L. Saunders, J. Perrin and D.B. Gaminack, J. Pharm. Pharmacol. 14:567 (1962).CrossRefGoogle Scholar
  55. 4).
    D. Papahajopoulos and N. Miller, Biochim. Biophys. Acta. 135:624 (1967).CrossRefGoogle Scholar
  56. 5).
    S. Cannistraro, G. Jori and A. Van de Vorst, Photochem. Photobiol. 27:517 (1978).CrossRefGoogle Scholar
  57. 6).
    E. Reddi, G. Jori, M.A.J. Rodgers and J.D. Spikes, Photochem. Photobiol. 38:639 (1983).CrossRefGoogle Scholar
  58. 7).
    L. Davenport and L. Brand, in “Fluorescence studies of excimer formation in liposomes using a pyrenemethyl cholesterol adduct,” presented at the Ninth International Congress on Photobiology TAM-H3, Philadelphia, Pennsylvania, 1–6 July, 1984.Google Scholar
  59. 1.
    A. Andreoni, R. Cubbeddu, S. De Silvestri, P. Laporta, G. Jori, and E. Reddi, Haematoporphyrin derivative: experimental evidence for aggregated species, Chem. Phys. Lett. 88:33(1982)Google Scholar
  60. 2.
    R. Brookfield, M. Craw, C.R. Lambert, E.J. Land, R. Redmond, R.S. Sinclair, T.G. Truscott, Excited state properties of haematoporphyrin, in: “Porphyrins in Tumor Phototherapy” A. Andreoni, R. Cubbeddu eds, Plenum, New York (1984)pp 3–10CrossRefGoogle Scholar
  61. 3.
    G.R. Fleming, D. Waldeck, and G.S. Beddard, Applications of synchronously pumped dye-lasers to time-resolved emission and absorption spectroscopy, Il Nuovo Cimento 63B:151 (1981)Google Scholar
  62. 4.
    P.J. Sadkowski, Ph.D Thesis, University of London (1981)Google Scholar
  63. 5.
    J.P. Ide, B.L. Gore, and R.L. Brookfield, to be publishedGoogle Scholar
  64. 6.
    D.V. O’Connor and D. Phillips, “Time Correlated Single Photon Counting”, Academic Press, London (1984)Google Scholar
  65. 7.
    C. Sconfienza, A. Van de Vorst, G. Jori, Photochem. Photobiol. 31:351 (1980)CrossRefGoogle Scholar
  66. 1.
    R.L. Lipson, E.J. Baldes and A.M. Olsen. The Use of a Derivative of Hematoporphyrin in Tumour Detection. J.-Natl. Cancer Inst., 26:1 (1961).Google Scholar
  67. 2.
    I. Diamond, A.F. McDonagh, C.B. Wilson, S.G. Granelli, S. Nielsen and R. Jaenicke. Photodynamic Therapy of Malignant Tumours. Lancet, 2:1175 (1972).CrossRefGoogle Scholar
  68. 3.
    R. Bonnett, R.J. Ridge, P.A. Scourides and M.C. Berenbaum. On the Nature of Haematoporphyrin Derivative. J. Chem. Soc., Perkin I, 3135 (1981).CrossRefGoogle Scholar
  69. 4.
    T.J. Dougherty, W.R. Potter and K.R. Weishaupt. The Structure of the Active Component of Hematoporphyrin Derivative, in: “Porphyrins in Tumor Phototherapy”, A. Andreoni and R. Cubeddu, eds., Plenum Press, New York-London (1983).Google Scholar
  70. 5.
    A. Andreoni, R. Cubeddu, S. de Silvestri, P. Laporta, G. Jori and E. Reddi, Haematoporphyrin Derivative: Experimental Evidence for Aggregated Species. Chem.Phys.Letts., 88:33 (1982).CrossRefGoogle Scholar
  71. 6.
    J. McVie, R.S. Sinclair and T.G. Truscott. Triplet States of Copper and Metal-Free Phthallocyanines. J. Chem. Soc., Faraday Trans. II, 74:1870 (1978).CrossRefGoogle Scholar
  72. 7.
    R. Bensasson, C.R. Goldschmidt, E.J. Land and T.G. Truscott. Laser Intensity and the Comparative Method for Determination of Triplet Quantum Yields. Photochem. Photobiol., 28:277 (1978).CrossRefGoogle Scholar
  73. 8.
    J. Moan, E.O. Pettersen and T. Christensen. The Mechanism of Photodynamic Inactivation of Haman Cells in vitro in the Presence of Haematoporphyrin. Br. J. Cancer, 39:398 (1979).CrossRefGoogle Scholar
  74. 9.
    K.R. Weishaupt, C.J. Gomer and T.J. Dougherty. Identification of Singlet Oxygen as the Cytotoxic Agent in Photo-inactivation of a Murine Tumor. Cancer. Res., 36:2326 (1976).Google Scholar
  75. 1.
    T.J. Dougherty, W.R. Potter and K.R. Weishaupt, The structure of the active component of hematoporphyrin derivative, in: “Porphyrin Localization and Treatment of Tumors, P.R. Doiron and C.S. Gomer, eds., A.R. Liss, Inc., New York (1984).Google Scholar
  76. 2.
    A. Poletti, S.M. Murgia, A. Pasqua, E. Reddi and G. Jori, Photo-physical and Photosensitizing Properties of Photofrin II, in: “Porphyrins in Tumor Phototherapy”, A. Andreoni and R. Cubeddu, eds., Plenum Press, NY (1984).Google Scholar
  77. 3.
    C.J. Gomer and T.J. Dougherty, Determination of 3H and 14C hematoporphyrin derivative distribution in malignant and normal tissue. Cancer Res., 30: 146 (1979).Google Scholar
  78. 4.
    H.B. Gregorie, E.O. Horger, J.L. Ward, J.F. Green, T. Richards, H.C. Robertson and T.B. Stevenson, Hematoporphyrin-derivative fluorescnece in malignant neoplasms. Ann. Surg., 167: 820 (1968).CrossRefGoogle Scholar
  79. 5.
    K.R. Weishaupt, C.J. Gomer and T.J. Dougherty, Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor, Cancer Res., 36: 2326 (1976).Google Scholar
  80. 6.
    P.V. Hariharan, J. Courtney and S. Elecczko, Production of hydroxyl radicals in cell systems exposed to hematoporphyrin and red light, Int. J. Radiat. Biol. 37: 691 (1980).Google Scholar
  81. 7.
    J.M. Backer, V.G. Budker, S.I. Eremenko and Y.N. Molin, Detection of the kinetics of biochemical reactions with oxygen using exchange broadening in the ESR spectra of nitroxide radicals, Biochim. Biophys. Acta, 460: 152 (1977).CrossRefGoogle Scholar
  82. 8.
    K. Reszka and C.F. Chignell, Spectroscopic studies of cutaneous photosensitizing agents-IV. The photolysis of benoxaprofen, an anti-inflammatory drug with phototoxic properties, Photochem. Photobiol., 38: 231, (1983).CrossRefGoogle Scholar
  83. 9.
    T. Ozawa, A. Hanaki, S. Matsumoto and M. Matsuo, Electron spin resonance studies of radicals obtained by the reaction of a-tocopherol.and its model compound with the superoxide ion Biochim. Biophys. Acta, 531: 72 (1978).CrossRefGoogle Scholar
  84. 10.
    G.R. Buettner and M.J. Need, Hydrogen peroxide and hydroxyl free radical production by hematoporphyrin derivative, ascorbate and light, submitted (1984).Google Scholar
  85. 11.
    G.R. Buettner, Thiyl free radical production with hematoporphyrinderivative, cysteine and light: a spin-trapping study, submitted (1984).Google Scholar
  86. 12.
    G.W. Grams, Oxidation of alpha-tocopherol by singlet oxygen, Tet. Lett., 50: 4823 (1971).Google Scholar
  87. 13.
    R. Yamauchi and S. Matsushita, Products formed by photosensitized oxidation of tocopherols, Agric. Biol. Chem., 43: 2157 (1979).CrossRefGoogle Scholar
  88. 1.
    T.J. Dougherty in Porphyrin Localizations and Treatment of Tumors, Edited by D.R. Dorion and C.J. Gomer. Alan R. Liss, N.Y. (in press).Google Scholar
  89. 2.
    L.I. Grossweiner and G.C. Goyal, Photochem. Photobiol. 40, 1 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • T. G. Truscott
    • 1
  • Antony F. McDonagh
    • 2
  • David A. Lightner
    • 3
  • C. Lambert
    • 4
  • M. A. J. Rodgers
    • 4
  • G. Jori
    • 5
  • E. Reddi
    • 5
  • J. D. Spikes
    • 6
  • Ralph L. Brookfield
    • 7
  • Bobby Redmond
    • 8
  • Edward J. Land
    • 9
  • T. George Truscott
    • 8
  • Garry R. Buettner
    • 10
  • Roy Pottier
    • 11
  • James Kennedy
    • 12
  1. 1.Paisley College Chemistry DepartmentPaisleyScotland, UK
  2. 2.Department of Medicine, Gastroenterology Unit and The Liver CenterUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of Chemistry and The Cellular and Molecular Biology ProgramUniversity of NevadaRenoUSA
  4. 4.Center for Fast Kinetics Res.Univ. of TexasAustinUSA
  5. 5.Istituto di Biologia AnimaleUniv. degli StudiPadovaItaly
  6. 6.Dept. of BiologyUniv. of UtahSalt Lake CityUSA
  7. 7.Davy Faraday Research LaboratoryThe Royal Institution of Great BritainLondonUK
  8. 8.Paisley CollegePaisleyScotland, UK
  9. 9.Paterson Labs.Christie Hospital and Holt Radium InstituteManchesterEngland, UK
  10. 10.Laboratory of Molecular BiophysicsNational Institute of Environmental Health SciencesResearch Triangle ParkUSA
  11. 11.Dept. of Chem/Chem Eng.Royal Military CollegeKingstonCanada
  12. 12.Ontario Cancer FoundationKingston ClinicKingstonCanada

Personalised recommendations