Skip to main content

Cholinergic Pathways in the Brain

  • Chapter

Abstract

Although acetylcholine (ACh) was the first neurotransmitter to be discovered, in many ways less is known about central cholinergic pathways than about many other neurotransmitters discovered much later. Reliable histochemical techniques for identifying cholinergic neurons have been slow to develop. Although excellent histochemical methods for locating acetylcholinesterase (AChE) exist, this enzyme is only a necessary, but not sufficient, means of identifying cholinergic neurons. However, with improved methods for measuring ACh, choline acetyltransferase (ChAT), high affinity choline uptake, muscarinic and nicotinic receptors, and ACh turnover, more is being learned about central cholinergic pathways. In addition, the development of a possible cholinergic specific neurotoxin, ethylcholine mustard aziridinium (AF64A) holds promise for expediting the mapping of cholinergic pathways in the brain (Fisher et al., 1982).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albanese, A., and Butcher, L. L., 1980, Acetylcholinesterase and catecholamine distribution in the locus coeruleus of the rat, Brain Res. Bull. 5: 127–134.

    PubMed  CAS  Google Scholar 

  • Assaf, S. Y., and Miller, J. J., 1977, Excitatory action of the mesolimbic dopamine system on septal neurons, Brain Res. 129: 353–360.

    PubMed  CAS  Google Scholar 

  • Atweh, S. F., and Kuhar, M. J., 1977, Autoradiographic localization of opiate receptors in rat brain III. The telencephalon, Brain Res. 134: 393–405.

    PubMed  CAS  Google Scholar 

  • Benardo, L. S., and Prince, D. A., 1980, Acetylcholine induced modulation of hippocampal pyramidal neurons, Brain Res. 211: 227–234.

    Google Scholar 

  • Ben-Ari, Y., Zigmond, R. E., Shute, C. C. D., and Lewis, P. R., 1977, Regional distribution of choline acetyltransferase and acetylcholinesterase in the amygdaloid complex and stria terminalis system, Brain Res. 120: 435–445.

    PubMed  CAS  Google Scholar 

  • Ben-Barak, J., and Dudai, Y., 1980, Early septal lesion: effect on the development of the cholinergic system in rat hippocampus, Brain Res. 185: 323–334.

    PubMed  CAS  Google Scholar 

  • Bigl, V., Woolf, N. J., and Butcher, L. L., 1982, Cholinergie projections from the basal forebrain to frontal parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis, Brain Research Bull. 8: 727–749.

    CAS  Google Scholar 

  • Bird, S. J., and Aghajanian, G. K., 1975, Denervation supersensitivity in the cholinergic septohippocampal pathway: A microiontophoretic study, Brain Res. 100: 355–370.

    PubMed  CAS  Google Scholar 

  • Bland, B. H., Kostropoulos, G. K., and Phillis, J. W., 1974, Actylcholine sensitivity of hippocampal formation neurons, Can. J. Physiol. Pharmacol. 52: 966–971.

    PubMed  CAS  Google Scholar 

  • Bloom, F. E., Costa, E., and Salmoiraghi, G. C., 1965, Anethesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis, J. Pharmacol. Exp. Ther. 150: 244–252.

    PubMed  CAS  Google Scholar 

  • Bobillier, P., Seguin, S., Degueurce, A., Lewis, B. D., and Pujol, J. F., 1979, The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography, Brain Res. 166: 1–8.

    PubMed  CAS  Google Scholar 

  • Bowers, M. B., Jr., and Roth, R. H., 1972, Interaction of atropine-like drugs with dopamine-containing neurons in rat brain, Br. J. Pharmacol. 44: 301–306.

    PubMed  CAS  Google Scholar 

  • Brownstein, M. J., Palkovits, M., Tappaz, M. L., Saavedra, J. M., and Kizer, J. S., 1976, Effect of surgical isolation of the hypothalaamus on its neurotransmitter content, Brain Res. 117: 287–295.

    PubMed  CAS  Google Scholar 

  • Butcher, S. G., and Butcher, L. L., 1974, Origin and modulation of acetylcholine activity in the neostriatum, Brain Res. 71: 167–171.

    PubMed  CAS  Google Scholar 

  • Butcher, S. G., Butcher, L. L., and Cho, A. K., 1976, Modulation of neostriatal acetylcholine in the rat by dopamine and 5-hydroxytryptamine afferents, Life Sci. 18: 733–744.

    PubMed  CAS  Google Scholar 

  • Cheney, D. L., LeFevre, H. F., and Racagni, G., 1975, Choline acetyl transferase activity and mass fragmentographic measurement of acetylcholine in specific nuclei and tracts of rat brain, Neuropharmacology 14: 801–809.

    PubMed  CAS  Google Scholar 

  • Cheney, D. L., Robinson, S. E., Malthe-Sorenssen, D., Wood, P. L., Commissiong, J. W., and Costa, E., 1978, Regulation of the cholinergic septal-hippocampal pathway: role of dopaminergic septal afferents, in “Advances in Pharmacology and Therapeutics,” Vol. 5 C. Dumont, ed., pp. 241–250, Pergamon Press, New York.

    Google Scholar 

  • Collier, B., and Mitchell, J. F., 1966, The central release of acetylcholine during stimulation of the visual pathway, J. Physiol. (Lond.) 84: 239–254.

    Google Scholar 

  • Conrad, L. C. A., Leonard, C. M., and Pfaff, D. W., 1974, Connections of the median and dorsal raphe nuclei in the rat: an autoradio-graphic and degeneration study, J. Comp. Neurol. 156: 179–206.

    PubMed  CAS  Google Scholar 

  • Consolo, S., Ladinsky, H., and Garattini, S., 1974, Effect of several dopaminergic parameters in the rat striatum, J. Pharm. Pharmacol. 26: 275–277.

    PubMed  CAS  Google Scholar 

  • Consolo, S., Ladinsky, H., Tirelli, A. S., Crunelli, V., Samanin, R., and Garattini, S., 1979, Increase in rat striatal acetylcholine content by d-fenfluramine, a serotonin releaser, Life Sci. 25: 1975–1981.

    PubMed  CAS  Google Scholar 

  • Coyle, J. T., Prince, D. L., and DeLong, M. R., 1983, Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219: 1184–1190.

    PubMed  CAS  Google Scholar 

  • Davies, P., 1979, Neurotransmitter-related enzymes in senile dementia of the Alzheimer type, Brain Res. 171: 319–327.

    PubMed  CAS  Google Scholar 

  • Davies, P., and Maloney, A. J. R., 1976, Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet 2: 1–403.

    Google Scholar 

  • Deadwyler, S. A., West, M. O., and Robinson, J. H., 1981, Entorhinal and septal inputs differentially control sensory-evoked responses in the rat dentate gyrus, Science 211: 11–81.

    Google Scholar 

  • Descarries, L., Beaudet, A., and Watkins, K. C., 1975, Serotonin nerve terminals in adult rat neocortex, Brain Res. 100: 563–588.

    PubMed  CAS  Google Scholar 

  • Deutsch, J. A., 1971, The cholinergic synapse and the site of memory, Science 174: 788–794.

    PubMed  CAS  Google Scholar 

  • Domino, E. F., Krause, R. R., and Bowers, J., 1973, Regional distribution of some enzymes involved with putative neurotransmitters in the human visual system, Brain Res. 58: 79–189.

    Google Scholar 

  • Dray, A., Gonye, T. J., Oakley, N. R., and Tanner, T., 1976, Evidence for the existence of a raphe projection to the substantia nigra in rat, Brain 133: 45–57.

    Google Scholar 

  • Dudar, J. D., 1975, The effect of septal nuclei stimulation on the release of acetylcholine from the rabbit hippocampus, Brain Res. 83: 123–133.

    CAS  Google Scholar 

  • Emson, P. C., Cuello, A. C., Paxinos, G., Jessell, T., and Iversen, L. L., 1977, The origin of substance P and acetylcholine projections to the ventral tegmental area and interpeduncular nucleus in the rat, Acta Physiol. Scand., Suppl. 452: 43–46.

    CAS  Google Scholar 

  • Emson, P. C., Paxinos, G., Le Gal La Salle, G., Ben-Ari, Y., and Silver, A., 1979, Choline acetyltransferase and acetylcholinesterase containing projections from the basal forebrain to the amygdaloid complex of the rat, Brain Res. 165: 271–282.

    CAS  Google Scholar 

  • Ferkany, J. W., and Enna, S. J., 1980, Interaction between GABAagonists and the cholinergic muscarinic system in rat corpus striatum, Life Sci. 27: 143–149.

    PubMed  CAS  Google Scholar 

  • Fisher, A., Mantione, C. R., Abraham, D. J., and Hanin, I., 1982, Long-term central cholinergic hypofunction induced in mice by ethylcholine aziridinium ion (AF 64A) in vivo, J. Pharmacol. Exp. Ther. 222: 140–145.

    PubMed  CAS  Google Scholar 

  • Fonnum, F., Grofova, I., Rinvik, E., Storm-Mathisen, J., and Walberg, F., 1974, Origin and distribution of glutamate decarboxylase in substantia nigra of the cat, Brain Res. 71: 77–92.

    PubMed  CAS  Google Scholar 

  • Fuxe, K., 1965, Distribution of monoamine nerve terminals in central nervous system, Acta Physiol. Scand., 64 (Suppl. 247): 41–85.

    Google Scholar 

  • Giambalvo, C. T., and Snodgrass, S. R., 1978, Biochemical and behavioral effects of serotonin neurotoxins on the nigrostriatal dopamine system: comparison of injection sites, Brain Res. 152: 555–566.

    PubMed  CAS  Google Scholar 

  • Gloor, P., 1972, Temporal lobe epilepsy: its possible contribution to the understanding of the functional significance of the amygdala and of its interaction with neocortical-temporal mechanisms, in “The Neurobiology of the Amygdala,” B. E. Eleftheriou, ed., pp. 423–457, Plenum Press, New York.

    Google Scholar 

  • Gogolak, G., Stumpf, C. H., Petske, H., and Sterc, J., 1968, The firing pattern of septal neurons and the form of the hippocampal theta wave, Brain Res. 7: 201–207.

    PubMed  CAS  Google Scholar 

  • Gottesfeld, Z., and Jacobowitz, D. M., 1978, Cholinergic projection of the diagonal band to the interpeduncular nucleus of the rat brain, Brain Res. 156: 329–332.

    PubMed  CAS  Google Scholar 

  • Gottesfeld, Z., and Jacobowitz, D. M., 1979, Cholinergic projections from the septal-diagonal band area to the habenular nuclei, Brain Res. 176: 391–394.

    PubMed  CAS  Google Scholar 

  • Hebb, C. O., Krnjevic, K., and Silver, A., 1963, Effect of undercutting on the acetylcholinesterase and choline acetyltransferase activity in the cat’s cerebral cortex, Nature 198: 692.

    CAS  Google Scholar 

  • Henke, H., and Fonnum, F., 1976, Topographical and subcellular distribution and choline acetyltransferase and glutamate decarboxylase in pigeon optic tectum, J. Neurochem. 27: 387–391.

    PubMed  CAS  Google Scholar 

  • Hernândez-Peon, R., O’Flaherty, J. J., and Mazzuchelli-O’Flaherty, A. L., 1967, Sleep and other behavioral effects induced by acetyl cholinic stimulation of basal temporal cortex and striate structure, Brain Res. 4: 243–267.

    PubMed  Google Scholar 

  • Hoover, D. B., and Baisden, R. H., 1980, Localization of putative cholinergic neurons innervating the anteroventral thalamus, Brain Res. Bull. 5: 519–524.

    PubMed  CAS  Google Scholar 

  • Hoover, D. B., and Jacobowitz, D. M., 1979, Neurochemical and histochemical studies of the effect of a lesion of the nucleus cuneiformis on the cholinergic innervation of discrete areas of the rat brain, Brain Res. 170: 113–122.

    PubMed  CAS  Google Scholar 

  • Jhamandas, K., and Sutak, M., 1976, Morphine-naloxone interaction in the central cholinergic system: the influence of subcortical lesioning and electrical stimulation, Br. J. Pharmacol. 58: 101–107.

    PubMed  CAS  Google Scholar 

  • Johnston, M. V., McKinney, M., and Coyle, J. T., 1979, Evidence for a cholinergic projection to neocortex from neurons in basal forebrain, Proc. Natl. Acad. Sci. USA 76: 5392–5396.

    CAS  Google Scholar 

  • Johnston, M. V., McKinney, M., and Coyle, J. T., 1981, Neocorticalcholinergic innervation: a description of extrinsic and intrinsic components in the rat, Exp. Brain Research 43: 159–172.

    CAS  Google Scholar 

  • Kataoka, K., Nakemura, Y., and Hassler, R., 1973, Habenulo-interpeduncular tract: a possible cholinergic neuron in rat brain, Brain Res. 63: 264–267.

    Google Scholar 

  • Kimura, H., and Maeda, T., 1982, Aminergic and cholinergic systems in the dorsolateral pontine tegmentum, Brain Research Bull. 9: 493–499.

    CAS  Google Scholar 

  • Kimura, H., McGeer, P. L., Peng, F., and McGeer, E. G., 1980, Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry, Science 208: 1057–1059.

    PubMed  CAS  Google Scholar 

  • Kobayashi, R. M., Palkovits, M., Hruska, R. E., Rothschild, R., and Yamamura, H. I., 1978, Regional distribution of muscarinic cholinergic receptors in rat brain, Brain Res. 154: 13–23.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K., Pumain, R., and Renaud, L., 1971, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. (Lond.) 215: 247–268.

    CAS  Google Scholar 

  • Krnjevic, K., and Silver, A., 1965, A histochemical study of cholinergic fibers in the cerebral cortex, J. Anat. 99: 711–759.

    PubMed  CAS  Google Scholar 

  • Kuhar, M. J., Aghajanian, G. K., and Roth, R. H., 1972, Tryptophan hydroxylase activity and synaptosomal uptake of serotonin in discrete brain regions after midbrain raphe lesion: correlations with serotonin levels and histochemical fluorescence, Brain Res. 44: 165–176.

    PubMed  CAS  Google Scholar 

  • Kuhar, M. J., Atweh, S. F., and Bird, S. J., 1978, Studies of cholinergic-monoaminergic interactions in rat brain, in “Cholinergicmonoaminergic Interactions in the Brain,” L. L. Butcher, eds., pp. 211–227, Academic Press, New York.

    Google Scholar 

  • Kuhar, M. J., Dehaven, R. N., Yamamura, H. I., Rommelspacher, H., and Simon, J. R., 1975, Further evidence for cholinergic habenulointerpeduncular neurons: pharmacologic and functional characteristics, Brain Res. 97: 265–275.

    PubMed  CAS  Google Scholar 

  • Kuhar, M. J., Sethy, V. H., Roth, R. H., and Aghajanian, G. K., 1973, Choline: Selective accumulation by central cholinergic neurons, J. Neurochem. 20: 581–593.

    PubMed  CAS  Google Scholar 

  • Kuhar, M. J., and Yamamura, H. I., 1976, Localization of cholinergic muscarinic receptors in rat brain by light microscopic radioautography, Brain Res. 110: 229–243.

    PubMed  CAS  Google Scholar 

  • Lake, N., 1973, Studies of the habenulo-interpeduncular pathway in cats, Exp. Neurol. 41: 113–132.

    PubMed  CAS  Google Scholar 

  • Landinsky, H., Consolo, S., Bianchi, S., and Jori, A., 1976, Increase in striatal acetylcholine by picrotoxin in the rat: evidence for a gabergic-dopaminergic-cholinergic line, Brain Res. 108: 351–361.

    Google Scholar 

  • Lauder, J. M., and Krebs, H., 1978, Serotonin as a differentiation signal in early neurogenesis, Dev. Neurosci. 1: 15–30.

    PubMed  CAS  Google Scholar 

  • Lehmann, J., and Fibiger, H. C., 1981, Anatomical organization of some cholinergic systems in the mammalian forebrain, in “Cholinergic Mechanisms: Phylogenetic Aspects, Central and Peripheral Synapses, and Clinical Significance,” G. Pepeu and H. Ladinsky, eds., Plenum Press, New York.

    Google Scholar 

  • Lehmann, J., Nagy, J. I., Atmadja, S., and Fibiger, H. C., 1980, The nucleus basalis magnocellularis: The origin of a cholinergic projection to the neocortex of the rat, Neuroscience 5: 1161–1174.

    PubMed  CAS  Google Scholar 

  • Leranth, C. S., Brownstein, M., ZAborszky, L., Jarâanyi, Z. S., and Palkovits, M., 1975, Morphological and biochemical changes in the rat interpenduncular nucleus following the transection of the habenulo-interpeduncular tract, Brain Res. 99: 124–128.

    PubMed  CAS  Google Scholar 

  • Lewis, P. R., and Schon, F. E. G., 1975, The localization of acetyl-cholinesterase in the locus coeruleus of the normal rat after 6-hydroxydopamine treatment, J. Anat. 120: 373–385.

    PubMed  CAS  Google Scholar 

  • Lewis, P. R., and Shute, C. D., 1967, The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system and the subfornical organ and supraoptic crest, Brain 90:521–539.

    PubMed  CAS  Google Scholar 

  • Lewis, P. R., and Shute, C. D., 1967, The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system and the subfornical organ and supraoptic crest, Brain 90:521–539.

    PubMed  CAS  Google Scholar 

  • Lewis, P. R., Shute, C. C. D., and Silver, A., 1967, Confirmation from choline acetylase of a massive cholinergic innervation to the rat hippocampus, J. Physiol. (Lond.) 191: 215–224.

    CAS  Google Scholar 

  • Lindvall, O., 1975, Mesencephalic dopaminergic afferents to the lateral septal nucleus of the rat, Brain Res. 87: 89–95.

    PubMed  CAS  Google Scholar 

  • Lorens, S. A., and Guldberg, H. C., 1974, Regional 5-hydroxytryptamine following selective midbrain raphe lesions in the rat, Brain Res. 78: 45–56.

    PubMed  CAS  Google Scholar 

  • Loy, R., and Moore, R. Y., 1979, Ontogeny of the noradrenergic innervation of the rat hippocampal formation, Anat. Embryol. (Berl.) 157: 243–253.

    CAS  Google Scholar 

  • Maletta, G. J., and Timiras, P. S., 1968, Choline acetyltransferase activity and total protein content in selected optic areas of the rat after complete light-deprivation during CNS development, J. Neurochem. 15: 787–793.

    PubMed  CAS  Google Scholar 

  • Malthe-Sorenssen, D., Cheney, D. L., and Costa, E., 1978a, Modulation of acetylcholine metabolism in the hippocampal cholinergic pathway way by intraseptally injected substance P, J. Pharmacol. Exp. Ther 206: 21–28.

    Google Scholar 

  • Malthe-Sorenssen, D., Wood, P. L., Cheney, D. L., and Costa, E., 1978b, Modulation of the turnover rate of acetylcholine in rat brain by intraventricular injection of thyrotropin-releasing hormone, somatostatin, neurotensin and angiotensin II, J. Neurochem. 31: 685–691.

    PubMed  CAS  Google Scholar 

  • Marks, M. J., and Collins, A. C., 1982, Characterization of nicotine binding in mouse brain and comparison with the binding of œ-bungarotoxin and quinuclidinyl benzilate, Mol. Pharmacol. 22: 554–564.

    PubMed  CAS  Google Scholar 

  • Matthews, D. A., Nadler, J. V., Lynch, G. S., and Cotman, C. W., 1974, Development of cholinergic innervation in the hippocampal formation of rat. I. Histochemical demonstration of acetylcholinesterase activity, Dev. Biol. 36: 130–141.

    PubMed  CAS  Google Scholar 

  • McCaughran, J. A., Genovese, F. L., and Schechter, N., 1980, The effect of kainic acid on cholinergic enzymes and receptors in the amygdala complex of the rat, Brain Res. 199: 127–133.

    PubMed  CAS  Google Scholar 

  • McGeer, P. L., McGeer, E. G., Fibiger, H. C., and Wickson, V., 1971, Neostriatal cholineacetylase and cholinesterase following selective brain lesions, Brain Res. 35: 308–314.

    PubMed  CAS  Google Scholar 

  • McGeer, P. L., McGeer, E. G., Sherer, U., and Singh, K., 1977, A glutaminergic corticostriatal path? Brain Res. 128: 369–373.

    PubMed  CAS  Google Scholar 

  • McGeer, E. G., Scherer-Singler, U., and Singh, E. A., 1979, Confirmatory data on habenular projections, Brain Res. 168: 375–376.

    PubMed  CAS  Google Scholar 

  • Mellgren, S. I., and Srebro, B., 1973, Changes in acetylcholinesterase and distribution of degenerating fibers in the hippocampal region after septal lesions in the rat, Brain Res. 52: 19–36.

    PubMed  CAS  Google Scholar 

  • Mitchell, R., 1980, A novel GABA receptor modulates stimulus-induced glutamate release from cortico-striatal terminals, Eur. J. Pharmacol. 67: 119–122.

    PubMed  CAS  Google Scholar 

  • Móntplaisir, J. Y., 1975, Cholinergic mechanisms involved in cortical activation arousal, Electroencephr. Clin. Neurophysiol. 38: 263–272.

    Google Scholar 

  • Moroni, F., Cheney, D. L., and Costa, E., 1978a, The turnover rate of acetylcholine in brain nuclei of rats injected intraventricularly and intraseptally with alpha and beta-endorphin, Neuropharmacology 17: 191–196.

    PubMed  CAS  Google Scholar 

  • Moroni, F., Malthe-Sorenssen, D., Cheney, D. L., and Costa, E., 1978b, Modulation of ACh turnover in the septal-hippocampal pathway by electrical stimulation and lesioning, Brain Res. 150: 333–341.

    PubMed  CAS  Google Scholar 

  • Mulas, A., Mulas, M. L., and Pepeu, G., 1974, Effect of limbic system lesions on acetylcholine release from the cerebral cortex of the rat, Psychopharmacologia 39: 223–230.

    PubMed  CAS  Google Scholar 

  • Nadler, J. V., Matthews, D. A., Cotman, C. W., and Lynch, G. S., 1974, Development of cholinergic innervation in the hippocampal formation of the rat. II. Quantitative changes in choline acetyltransferase and acetylcholinesterase activities, Dev. Biol. 36: 142–154.

    PubMed  CAS  Google Scholar 

  • Neal, M. J., 1976, Acetylcholine as a retinal transmitter substance, in “Transmitters in the Visual Process,” S. L. Bonting, ed., pp. 127–143, Pergamon Press, Oxford.

    Google Scholar 

  • Nicolaou, N. M., Garcia-Munoz, M., Arbuthnott, G. W., and Eccleston, D., 1979, Interactions between serotonergic and dopaminergic systems in rat brain demonstrated by small unilateral lesions of the raphe nuclei, Eur. J. Pharmacol. 57: 295–305.

    PubMed  CAS  Google Scholar 

  • Nistri, A., Bartolini, A., Deffenu, G., and Pepeu, G., 1972, Investigations into the release of acetylcholine from the cerebral cortex of the cat: effects of amphetamine, of scopolamine and of septal lesions, Neuropharmacology 11: 665–674.

    PubMed  CAS  Google Scholar 

  • Olton, D. S., and Feustle, W. A., 1981, Hippocampal function required for nonspatial working memory, Exp. Brain Res. 41: 380–389.

    PubMed  CAS  Google Scholar 

  • Pepeu, G., Mulas, A., and Mulas, M. L., 1973, Changes in the acetylcholine content in the rat brain after lesions of the septum, fimbria, and hippocampus, Brain Res. 57: 153–164.

    PubMed  CAS  Google Scholar 

  • Richter, J. A., Perry, E. K., and Tomlinson, B. E., 1980, Acetylcholine and choline levels in post-mortem human brain tissue: preliminary observations in Alzheimer’s disease, Life Sci. 26: 1683–1689.

    PubMed  CAS  Google Scholar 

  • Robinson, S. E., 1982, Interaction of the median raphe nucleus and hypothalamic serotonin with cholinergic agents and pressor responses in the rat, J. Pharmacol. Exp. Ther. 223: 662–668.

    PubMed  CAS  Google Scholar 

  • Robinson, S. E., 1983, Effect of specific serotonergic lesions on cholinergic neurons in the hippocampus, cortex and striatum, Life Sci. 32: 345–353.

    PubMed  CAS  Google Scholar 

  • Robinson, S. E., Cheney, D. L., and Costa, E., 1978, Effect of nomifensine and other antidepressant drugs on acetylcholine turnover in various regions of rat brain, Naunyn Schmiedebergs Arch. Pharmacol. 304: 263–269.

    PubMed  CAS  Google Scholar 

  • Robinson, S. E., Malthe-Sorenssen, D., Wood, P. L., and Commisssiong, J., 1979, Dopaminergic regulation of the cholinergic septal hippocampal pathway, J. Pharmacol. Exp. Ther. 208: 476–479.

    PubMed  CAS  Google Scholar 

  • Rommelspacher, H., and Kuhar, M. J., 1974, Effects of electrical stimulation on the acetylcholine levels in central cholinergic nerve terminals, Brain Res. 81: 243–251.

    PubMed  CAS  Google Scholar 

  • Rommelspacher, H., and Kuhar, M. J., 1975, Effects of dopaminergic drugs and acute medial forebrain bundle lesions on striatal acetylcholine levels, Life Sci. 16: 65–70.

    PubMed  CAS  Google Scholar 

  • Rossor, M. N., Garrett, N. J., Johnson, A. L., Mountjoy, C. Q., Roth, M., and Iversen, L. L., 1982, A post-mortem study of the cholinergic and GABA systems in senile dementia, Brain 105: 313–330.

    PubMed  CAS  Google Scholar 

  • Rotter, A., Birdsall, N. J. M., Burgen, A. S. V., Field, P. M., Hulme, E. C., and Raisman, G., 1979, Muscarinic receptors in the central nervous system of the rat. I. Technique for autoradiographic localization of the binding of [3H]propylbenzilylcholine mustard and its distribution in the forebrain, Brain Research Rev. 1: 141–165.

    CAS  Google Scholar 

  • Rotter, A., and Jacobowitz, D. M., 1981, Neurochemical identification of cholinergic forebrain projection sites of the nucleus tegmentalis dorsalis lateralis, Brain Res. 6: 525–529.

    CAS  Google Scholar 

  • Sastry, B. R., Zialkowski, S. E., Hansen, L. M., Kavanagh, J. P., and Evoy, E. M., 1979, Acetylcholine release in interpeduncular nucleus following the stimulation of habenula, Brain Res. 164: 334–337.

    PubMed  CAS  Google Scholar 

  • Scatton, B., and Bartholini, G., 1980, Increase in striatal acetylcholine levels by GABA-ergic agents: dependence on corticostriatal neurons, Brain Res. 200: 174–178.

    PubMed  CAS  Google Scholar 

  • Scatton, B., and Bartholini, G., 1979, Increase in striatal actylcholine levels by GABA mimetic drugs: lack of involvement of the nigrostriatal dopaminergic neurons, Eur. J. Pharmacol. 56: 181–182.

    PubMed  CAS  Google Scholar 

  • Schwartz, R. D., and Kellar, K. J., 1983, 3H-Acetylcholine binding sites located on catecholamine and serotonin terminals in rat striatum, Fed. Proceed. 42: 879.

    Google Scholar 

  • Schwartz, R. D., McGee, R., and Kellar, K. J., 1982, Nicotinic cholinergic receptors labeled by [3H]acetylcholine in rat brain, Mol. Pharmacol. 22: 56–62.

    PubMed  CAS  Google Scholar 

  • Segal, M., and Landis, S. C., 1974, Afferents to the septal areas of the rat studied with the method of retrograde axonal transport of horseradish peroxidase, Brain Res. 82: 263–268.

    PubMed  CAS  Google Scholar 

  • Sethy, V. H., Kuhar, M., Roth, H. R., Van Woert, M. H., and Aghajanian K. G., 1973, Cholinergic neurons: effect of acute septal lesion on acetylcholine and choline content of rat hippocampus, Brain Res. 55: 481–484.

    PubMed  CAS  Google Scholar 

  • Shute, C. C. D., and Lewis, P. R., 1966, Cholinergic and monoaminergic pathways in the hypothalamus, Br. Med. Bull. 22: 221–226.

    PubMed  CAS  Google Scholar 

  • Shute, C. C. D., and Lewis, P. R., 1963, Cholinesterase-containing systems of the brain of the rat, Nature 199: 1160–1164.

    PubMed  CAS  Google Scholar 

  • Shute, C. C. D., and Lewis, P. R., 1967, The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections, Brain 90: 467–520.

    Google Scholar 

  • Simantov, R., Kuhar, M. J., Uhl, G. R., and Snyder, S. H., 1977, Opioid peptide enkephalin: immunohistochemical mapping in rat central nervous system, Proc. Natl. Acad. Sci. USA 74: 2167–2171.

    PubMed  CAS  Google Scholar 

  • Singh, M. M., 1981, Cholinergic mechanisms and the psychobiology of schizophrenia, in “Biological Psychiatry 1981,” C. Perris, G. Strüwe and B. Jansson, eds., pp. 793–800, Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Smith, C. M., 1974, Acetylcholine release from the cholinergic septohippocampal pathway, Life Sci. 14: 2159–2166.

    PubMed  CAS  Google Scholar 

  • Sorimachi, M., and Kataoka, K., 1974, Choline uptake by nerve terminals: a sensitive and a specific marker of cholinergic innervation, Brain Res. 72: 350–353.

    PubMed  CAS  Google Scholar 

  • Spencer, H. J., 1976, Antagonism of cortical excitation of striatal neurons by glutamic acid diethyl ester: evidence for glutamic acid as an excitatory transmitter in the rat striatum, Brain Res. 102: 91–101.

    PubMed  CAS  Google Scholar 

  • Stadler, H., Lloyd, K. G., Gadea-Ciria, M., and Bartholini, G., 1973, Enhanced striatal acetylcholine release by chlorpromazine and its reversal by apomorphine, Brain Res. 55: 476–480.

    PubMed  CAS  Google Scholar 

  • Steiner, F., 1968, Influence of microelectrophoretically applied acetylcholine on the responsiveness of hippocampal and lateral geniculate neurons, Pfluegers Arch. 303: 173–180.

    CAS  Google Scholar 

  • Storm-Mathisen, J., 1970, Quantitative histochemistry of acetylcholinesterase in rat hippocampal region correlated to histochemical staining, J. Neurochem. 17: 739–750.

    PubMed  CAS  Google Scholar 

  • Szerb, J. C., 1967, Cortical acetylcholine release and electorencephalographic arousal, J. Physiol. 192: 329–343.

    PubMed  CAS  Google Scholar 

  • Trabucchi, M., Cheney, D., Racagni, G., and Costa, E., 1974, Involvement of brain cholinergic mechanisms in the action of chlorpromzine, Nature 249: 664–666.

    PubMed  CAS  Google Scholar 

  • Trabucchi, M., Cheney, D. L., Racagni, G., and Costa, E., 1975a, Pen tobarbital and in vivo turnover rate of actylcholine in mouse brain and in regions of rat brain, Pharmacol. Res. Commun. 1: 81–94.

    Google Scholar 

  • Trabucchi, M., Cheney, D. L., Racagni, G., and Costa, E., 1975b, In vivo inhibition of striatal acetylcholine turnover by L-DOPA, apomorphine and (+)-amphetamine, Brain Res. 85: 130–134.

    PubMed  CAS  Google Scholar 

  • Urano, A., 1977, Effects of the eye enucleation on the activity of monoamine oxidase and acetylcholinesterase in the superior colliculus of the rat, Cell Tissue Res. 179: 331–345.

    PubMed  CAS  Google Scholar 

  • Vander Kooy, D., and Hattori, T., 1980, Dorsal raphe cells with collateral projections to the caudate-putamen and substantia nigra: A fluorescent retrograde double labeling study in the rat, Brain Res. 186: 1–7.

    Google Scholar 

  • Vanderwolf, C. H., and Robinson, T. E., 1981, Reticulo-cortical activity and behavior: A critique of the arousal theory and a new synthesis, Behay. Brain Sciences 4: 459–514.

    Google Scholar 

  • Wenk, H., Bigl, V., and Meyer, V., 1980, Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats. Brain Research Rev. 2: 295–316.

    CAS  Google Scholar 

  • Wood, P.L., Malthe-Sorenssen, D., Cheney, D.L., and Costa, E., 1978, Increase of hippocampal acetylcholine turnover rate and the stretching-yawning syndrome elicited by alpha-MSH and ACTH, Life Sciences 22: 673–678.

    PubMed  CAS  Google Scholar 

  • Wood, P. L., and Richard, J., 1982, GABAergic regulation of the sub-stantia innominata-cortical cholinergic pathway, Neuropharmacology 21: 969–972.

    PubMed  CAS  Google Scholar 

  • Wood, P. L., and Stotland, L. M., 1980, Actions of enkephalin, p and partial agonist analgesics on acetylcholine turnover in rat brain, Neuropharmacology 19: 975–982.

    PubMed  CAS  Google Scholar 

  • Woolf, N. J., and Butcher, L. L., 1982, Cholinergic projections to the basolateral amygdala: a combined Evans blue and acetylcholinesterase analysis, Brain Research Bull. 8: 751–763.

    CAS  Google Scholar 

  • Yamamura, H. I., Kuhar, M. J., and Snyder, S. H., 1974, In vivo identification of muscarinic cholinergic receptor binding in rat brain, Brain Res. 80: 170–176.

    PubMed  CAS  Google Scholar 

  • Yarbrough, G. G., 1976, TRH potentiates excitatory actions of actylcholine on cerebral cortical neurons, Nature 263: 523–524.

    PubMed  CAS  Google Scholar 

  • Zsilla, G., Racagni, G., Cheney, D. L., and Costa, E., 1977, Constant rate infusion of deuterated phosphorylcholine to measure the effects of morphine on acetylcholine turnover rate in specific nuclei of rat brain, Neuropharmacology 16: 25–31.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Robinson, S.E. (1985). Cholinergic Pathways in the Brain. In: Singh, M.M., Warburton, D.M., Lal, H. (eds) Central Cholinergic Mechanisms and Adaptive Dysfunctions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1218-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1218-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1220-8

  • Online ISBN: 978-1-4684-1218-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics