Cholinergic Mechanisms, Adaptive Brain Processes and Psychopathology

Commentary and A Blueprint for Research
  • Man Mohan Singh


The data reviewed in this book implicate central cholinergic mechanisms in many processes in the train of events that convert sensory inputs into behavioral outputs or what may be broadly described as “information processing.” Included among these are: electrocortical arousal, REM sleep, attention, perception, input-output association formation, retrieval of past memories, motivation, mood, and behavioral outputs. This cuts a wide swathe in the realm of higher brain functions.


Limbic System Cholinergic Neuron Cholinergic System Inferior Parietal Lobule Cholinergic Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akert, K., 1964, Comparative anatomy of frontal cortex and thalamofrontal connections, in “The Frontal Granular Cortex and Behavior,” J.M. Warren and K. Akert, eds., pp. 372–396, McGraw Hill, New York.Google Scholar
  2. Anchel, H., and Lindsley, D. B., 1972, Differentiation of two reticulohypothalamic systems regulating hippocampal activity, Electroencephalogr. Clin. Neurophysiol. 32:209–226.Google Scholar
  3. Andén, N.-E., Dahlström, A., Fuxe, K., Larson, K., Olson, L., and Ungerstedt, U., 1966, Ascending monoamine neurons to the telencephalon and diencephalon, Acta Physiol. Scand. 67:313–326.Google Scholar
  4. Bartus, R. T., Dean, III, R. L., Beer, B., and Lippa, A. S., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science 217:408–417.Google Scholar
  5. Bennett, T. L., 1970, Hippocampal EEG correlates of behavior, Electroencephalogr. Clin. Neurophysiol. 28:17–23.Google Scholar
  6. Bennett, T. L., and Gottfried, J., 1970, Hippocampal theta activity and response inhibition, Electroencephalogr. Clin. Neurophysiol. 29:196–200.Google Scholar
  7. Callaway, E., and Band, I., 1958, Some psychopharmacological effects of atropine, Arch. Neurol. Psychiatry 79:91–102.Google Scholar
  8. Cools, A. R., and Van den Bercken, J. H. L., 1977, Cerebral organization of behavior and the neostriatal function, in “Psychobiology of Striatum,” A. R. Cools, A. H. M. Lohman, and J. H. L. Van den Bercken, eds., pp. 119–140, North Holland Publishing Company, Amsterdam.Google Scholar
  9. Dahlström, A., 1969, Fluorescence histochemistry of monoamines in the central nervous system, in “Basic Mechanisms of the Epilepsies,” H. H. Jasper, A. A. Ward, and A. Pope, eds., pp. 212–217, Little Brown, Boston.Google Scholar
  10. Dalton, A., and Black, A. H., 1968, Hippocampal electrical activity during the operant conditioning of movement and refraining from movement, Comm. Behay. Biol. 2:267–273.Google Scholar
  11. DeLong, M., 1972, Activity of basal ganglia neurons during movement, Brain Res. 40: 127–135.Google Scholar
  12. Domesick, V. B., 1969, Projections from the cingulate cortex in the rat, Brain Res. 12: 296–320.Google Scholar
  13. Domesick, V. B., 1972, Thalamic relationships of the medial cortex in the rat, Brain Behay. Evol. 6:457–483.Google Scholar
  14. Douglas, R. J., 1972, Pavlovian conditioning and the brain, in “Inhibition and Learning,” R. Boakes and M. Halliday, eds., pp. 529–553, Academic Press, London.Google Scholar
  15. Douglas, R. J., 1975, The development of hippocampal function: Implication for theory and therapy, in “The Hippocampus, Vol. 2,” R. L. Isaacson, and K. H. Pribram, eds., pp. 327–361. Plenum Press, New York.Google Scholar
  16. Douglas, R. J., and Pribram, K. H., 1969, Distraction and habituation in monkeys with limbic lesions, J. Comp. Physiol. Psychol. 69:473–480.Google Scholar
  17. Douglas, R. J., and Pribram, K. H., 1966, Learning and limbic lesions, Neurophychologia 4: 197–220.CrossRefGoogle Scholar
  18. Egger, M. D., and Flynn, J. P., 1967, Further studies on the effects of amygdaloid stimulation and ablation on hypothalamically-elicited attack behavior in cats, Prog. Brain Res. 27:165–182.Google Scholar
  19. Ellinwood, Jr., E. H., Sudilovsky, A., and Nelson, L. M., 1973, Evolving behavior in the clinical and experimental amphetamine (model) psychoses, Am. J. Psychiatry 130:1088–1093.Google Scholar
  20. Emson, P. C., Björklund, 0., Lindvall, 0., and Paxinos, G., 1979, Contributions of different afferent pathways to the catecholamine and 5-hydroxytryptamine innervation of the amygdala: A neurochemical and histochemical study, Neuroscience 4: 1347–1357.Google Scholar
  21. Franzén, G., and Ingvar, D. H., 1975, Absence of activation in frontal structures during psychological testing of chronic schizophrenics, J. Neurol. Neurosurg. Psychiatry 38:1027–1032.Google Scholar
  22. Fuxe, K., 1965, The distribution of monoamine terminals in the central nervous system, Acta Physiol. Scand. 64 (Suppl. 247):38–85.Google Scholar
  23. Gloor, P., 1972, Temporal lobe epilepsy: Its possible contribution to the understanding of the significance of the amygdala and of its interactions with neocortical-temporal mechanisms, in “The Neurobiology of the Amygdala, ”B. E. Eleftheriou, ed., pp. 423–457, Plenum Press, New York.Google Scholar
  24. Goldman, P. S., and Nauta, W. J. H., 1977, An intricately patterned prefronto-caudate projection in the rhesus monkey, J. Comp. Neurol. 171:369–386.Google Scholar
  25. Graeff, F. G., Quintero, S., and Gray, J. A., 1980, Median raphe stimulation, hippocampal theta rhythm and threat-induced behavioral inhibition, Physiol. Behay. 25:253–261.Google Scholar
  26. Grandstaff, N. W., and Pribram, K. H., 1972, Habituation: Electrical changes in the visual system, Neuropsychologia 10: 125–132.Google Scholar
  27. Graybiel, A. M.,and Ragsdale, C. W., 1979, Fiber connections of the basal ganglia, Prog. Brain. Res. 51:239–283.Google Scholar
  28. Green, J. F., and Arduini, A., 1954, Hippocampal electrical activity in arousal, J. Neurophysiol. 17:533–557.Google Scholar
  29. Groll, E., 1966, Central nervous system and peripheral activation variables during vigilance performance, Z. Exp. Angew. Psychol. 13:248–264.Google Scholar
  30. Grossman, S. P., 1972, The role of the amygdala in escape-avoidance behaviors, in “The Neurobiology of the Amygdala,” B. E. Eleftheriou, ed., pp. 537–551, Plenum Press, New York.Google Scholar
  31. Hall, E., 1972, Some aspects of the structural organization of the amygdala, in “The Neurobiology of the Amygdala,” B. E. Eleftheriou, ed., pp. 95–121, Plenum Press, New York.Google Scholar
  32. Hassler, R., 1978, Striatal control of locomotion, intentional actions and of integrating and perceptive activity, J. Neurol. Sci. 36:187–224.Google Scholar
  33. Heimer, L., and Wilson, R. D., 1975, The subcortical projections of the allocortex: Similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex, in “Golgi Centennial Symposium,” M. Santini, ed., pp. 177–193, Raven Press, New York.Google Scholar
  34. Heise, G. A., 1975, Discrete trial analysis of drug action, Fed. Proc. 34:1898–1903.Google Scholar
  35. Herkenham, M., and Nauta, W. J. H., 1977, Afferent connections of the habenular nuclei in the rat: A horseradish peroxidase study, with a note on the fiber-of-passage problem, J. Comp. Neurol. 173:123–146.Google Scholar
  36. Herkenham, M., and Nauta, W. J. H., 1979, Efferent connections of the habenular nuclei in the rat, J. Comp. Neurol. 187:19–48.Google Scholar
  37. Herzog, A. G., and Van Hoesen, G. W., 1976, Temporal neocortical afferent connections to the amygdala in the rhesus monkey, Brain Res. 115: 57–69.Google Scholar
  38. Hillarp, N.-A, Fuxe, K., and Dahlström, A., 1966, Demonstration and mapping of central neurons containing dopamine, noradrenaline, and 5-hydroxytryptamine and their reactions to psychopharmaca, Pharmacol. Rev. 18:(No. 1, Part 1):727–741.Google Scholar
  39. Hingtgen, J. N., and Aprison, M. H., 1976, Behavioral and environmental aspects of the cholinergic system, in “Biology of Cholinergic Function,” A. M. Goldberg, and I. Hanin, eds., pp. 515–566, Raven Press, New York.Google Scholar
  40. Humphrey, T., 1972, The development of the human amygdala complex, in “The Neurobiology of the Amygdala,” B. E. Eleftheriou, ed., pp. 21–80, Plenum Press, New York.Google Scholar
  41. Ingvar, D. H., and Franzén, G., 1974, Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia, Acta Psychiatr. Scand. 50:425–462.Google Scholar
  42. Isaacson, R. L., 1972, Neural systems of the limbic brain and behavioral inhibition, in “Inhibition and Learning,” R. A. Boakes and M. S. Halliday, eds., pp. 41–71, Academic Press, New York. Isaacson, R. L., 1974, “The Limbic System,” Plenum Press, New York.Google Scholar
  43. Jasper, H. H., 1949, Diffuse projection systems - The integrative action of the thalamic reticular system, Electroencephalogr. Clin. Neurophysiol. 1:405–420.Google Scholar
  44. Kaada, B. R., 1972, Stimulation and regional ablation of the amygdaloid complex with reference to functional representations, in “The Neurobiology of the Amygdala,” B. E. Eleftheriou, ed., pp. 205–281, Plenum Press, New York.Google Scholar
  45. Kaada, B. R., 1951, Somato-motor, autonomic and electrocorticographic responses to electrical stimulation of “rhinencephalic” and other structures in primates, cat and dog: A study of responses from the limbic, subcallosal, orbito-insular, piriform and temporal cortex, hippocampus fornix and amygdala, Acta Physiol. Scand. 24 (Suppl. 83):1–285.Google Scholar
  46. Kamp, A., Lopes DaSilva, F. H., and Storm Van Leeuwen, W., 1971, Hippocampal frequency shifts in different behavioral situations, Brain Res. 31: 287–294.Google Scholar
  47. Karczmar, A. G., 1975, Cholinergic influences on behavior, in “Cholinergic Mechanisms,” P. G. Waser, ed., pp. 501–529, Raven Press, New York.Google Scholar
  48. Karczmar, A. G., 1977, Exploitable aspects of central cholinergic function, particularly with respect to the EEG, motor, analgesic and mental functions, in “Cholinergic Mechanisms and Psychopharmacology,” D. J. Jenden, ed., pp. 679–708, Plenum Press, New York.Google Scholar
  49. Karczmar, A. G., 1979, Brain acetylcholine and animal electrophysiology, in “Brain Acetylcholine and Neuropsychiatric Disease,” K. L. Davis, and P. A. Berger, eds., pp. 265–310, Plenum Publishing Corp., New York.Google Scholar
  50. Karli, P., Vergnes, M., Eclancher, F., Schmitt, P., and Chaurand, J. P. 1972, Role of the amygdala on the control of “mouse-killing” behavior in the rat, in “The Neurobiology of the Amygdala,” B. E. Eleftheriou, ed., pp. 553–580, Plenum Press, New York.Google Scholar
  51. Kling, A., and Steklis, H. D., 1976, A neural substrate for affiliative behavior in nonhuman primates, Brain Behay. Evol. 13:216–238.Google Scholar
  52. Koikegami, H., 1963, Amygdala and other related limbic structures: Experimental studies on the anatomy and function. I. Anatomical researches with same neurophysiological observations, Acta Med. Biolog. (Niigata) 10:161–277.Google Scholar
  53. Koikegami, H., 1964, Amygdala and other related limbic structures: Experimental studies on the anatomy and function. II. Functional experiments, Acta Med. Biolog. (Niigata) 12:73–266.Google Scholar
  54. Kornhuber, H. H., 1971, Motor functions of cerebellum and basal ganglia: The cerebellocortical saccadic (ballistic) clock, the cerebellonuclear hold regulator, and the basal ganglia ramp (the voluntary speed smooth movement) generator, Kybernetik 8: 157–162.Google Scholar
  55. Künzle, H., 1977, Projections from the primary somatosensory cortex to basal ganglia and thalamus in the monkey, Exp. Brain Res. 30:481–492.Google Scholar
  56. Kuypers, H. G. J. M., and Maisky, V. A., 1975, Retrograde transport of horseradish peroxidase from spinal cord to brain stem cell groups in the rat, Neurosci. Lett. 1:9–14.Google Scholar
  57. Lammers, H. L., The neural connections of the amygdaloid complex in mammals, 1972, in “The Neurobiology of the Amygdala,” B. E. Eleftheriou, ed., pp. 123–144, Plenum Press, New York.Google Scholar
  58. Lindsley, D. B., 1961, The reticular activating system and perceptual integration, in “Electrical Stimulation of the Brain,” D. E. Sheer, ed., University of Texas Press, Austin.Google Scholar
  59. Magoun, H. W., 1958, “The Waking Brain,” Charles Thomas, Springfield. Macadar, A. W., Chalupa, L. M., and Lindsley, D. B., 1974, Differentiation of brain stem loci which affect hippocampal and neocortical electrical activity, Exp. Neurol. 43: 499–514.Google Scholar
  60. Mahut, H., 1971, Spatial and object reversal learning in monkeys with partial temporal lobe ablations, Neuropsychologia 9: 409–424.Google Scholar
  61. Matthies, H.,, Ott, T., and Kammerer, E., 1975, Cholinergic influences on learning, in “Cholinergic Mechanisms,” P. G. Waser, ed., pp. 493–499, Raven Press, New York.Google Scholar
  62. Matthysse, S., 1974, Schizophrenia: Relationship to dopamine transmission, motor control and feature extraction, in “The Neurosciences: Third Study Program,” T. O. Schmitt, and T. G. Worden, eds., pp. 733–737, MIT Press, Cambridge.Google Scholar
  63. Matthysse, S., 1977, The biology of attention, Schizophr. Bull. 3(3):370–372.Google Scholar
  64. Mesulam, M.-M., and Geschwind, N., 1978, On the possible role of neocortex and its limbic connections in the process of attention and schizophrenia: Clinical cases of inattention in man and experimental anatomy in monkey, J. Psychiatr. Res. 14:249–259.Google Scholar
  65. Mesulam, M.-M., Van Hoesen, G. W., Pandya, D. N., and Geschwind, N., 1977, Limbic and sensory connections of the inferior parietal lobule (Area PG) in the rhesus monkey: A study with a new method for horseradish peroxidase histochemistry, Brain Res. 136: 393–414.Google Scholar
  66. Mettler, F. A., 1955, Perceptual capacity, functions of the corpus striatum and schizophrenia, Psychiatr. Q. 29:89–111.Google Scholar
  67. Mishkin, M., 1978, Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus, Nature 273:297–298.Google Scholar
  68. Moruzzi, G., and Magoun, H. W., 1949, Brain stem reticular formation and activation of the EEG, Electroencephalogr. Clin. Neurophysiol. 1:455–473.Google Scholar
  69. MacLean, P. D., 1972, Cerebral evolution and emotional processes: new findings on the striatal complex, Ann. N.Y. Acad. Sci. 193:137–139.Google Scholar
  70. MacLean, P. D., 1976, Sensory and perceptive factors in emotional functions of the triune brain, in “Biological Foundations of Psychiatry, Vol. 1.” R. G. Grenell and S. Gabay, eds., pp. 177–198, Raven Press, New York.Google Scholar
  71. Nauta, W. J. H., 1971, The problem of the frontal lobe: A reinterpretation, J. Psychiatr. Res. 8:167–187.Google Scholar
  72. Nauta, W. J. H., and Domesick, V. B., 1981, Ramifications of the limbic system, in “Psychiatry and the Biology of the Human Brain,” S. Matthysse, ed., pp. 165–188, Elsevier North Holland, Amsterdam.Google Scholar
  73. Nurnberger, Jr., J., Sitaram, N., Gershon, E. S., and Christian Gillin, J., 1983, A twin study of cholinergic REM induction, Biol. Psychiatry 18:1161–1165.Google Scholar
  74. O’Hanlon, J. F., and Beatty, F., 1977, Concurrence of electroencephalographic and performance changes during a simulated radar watch and some implications for the arousal theory of vigilance, in “Vigilance Theory: Operational Performance and Physiological Correlates,” G. Mackie, ed., pp. 189–201., Plenum Press, London.Google Scholar
  75. Olds, J., 1976, Reward and drive neurons: 1975, in “Brain-Stimulation Reward,” A. Wauquier and E. T. Rolls, eds., pp. 1–27, North Holland Publishing Company, Amsterdam.Google Scholar
  76. Olton, D. S., 1972, Behavioral and neuroanatomical differentiation of response suppression and response-shift mechanisms in the rat, J. Comp. Physiol. Psychol. 78:450–456.Google Scholar
  77. Pandya, D. N., and Kuypers, H. G. J. M., 1969, Cortico-cortical con nections in the rhesus monkey, Brain Res. 13: 13–36.Google Scholar
  78. Petras, J. M., 1971, Connections of the parietal lobe, J. Psychiatr., Res. 8:189–201.Google Scholar
  79. Pribram, K. H., 1971, Languages of the Brain Experimental Paradoxes and Principles in “Neuropsychology,” Prentice Hall, Englewood Cliffs. Pribram, K. H., 1967, Memory and the organization of attention, in “Brain Function,” D. B. Lindsley and A. A. Lumsdaine, eds., University of California Press, Berkeley.Google Scholar
  80. Pribram, K. H., 1960, The intrinsic systems of the forebrain, in “Handbook of Physiology, Neurophysiology II,” J. Field, H. W. Magoun and V. E. Hall, eds., American Physiological Society, Washington, D.C.Google Scholar
  81. Pribram, K. H., and Isaacson, R. L., 1975, Summary, in “The Hippocampus,” R. L. Isaacson and K. H. Pribram, eds., pp. 429–441, Plenum Press, New York.Google Scholar
  82. Pribram, K. H., and McGuiness, D., 1975, Arousal, activation and effort in the control of attention, Psychol. Rev. 82:116–149.Google Scholar
  83. Randrup, A., and Munkvad, I., 1968, Behavioral stereotypies induced by pharmacological agents, Pharmacopsychiatry 1: 18–26.Google Scholar
  84. Randrup, A., and Munkvad, I., 1970, Biochemical anatomical and psychological investigations of stereotyped behavior induced by amphetamines, in “Amphetamines and Related Compounds,” E. Costa and S. Garratini, eds., pp. 695–713, Raven Press, New York.Google Scholar
  85. Rodgers, R. J., and Brown, K., 1976, Amygdaloid function in the central cholinergic mediation of shock-induced aggression in the rat, Aggress. Behay. 2:131–152.Google Scholar
  86. Routtenberg, A., 1968, The two-arousal hypothesis: Reticular formation and limbic system, Psychol. Rev. 75:51–80.Google Scholar
  87. Saper, C. B., Loewy, A. D., Swanson, L. W., and Cowan, W. M., 1976, Direct hypothalamo-autonomic connections, Brain Res. 177: 305–312.Google Scholar
  88. Schallert, T., DeRyck, M., and Teitelbaum, P., 1980, Atropine stereotypy as a behavioral trap: A movement subsystem and electroencephalographic analysis, J. Comp. Physiol. Psychol. 94:1–24.Google Scholar
  89. Schwent, V. L., and Hillyard, S. A., 1975, Evoked potential correlates of selective attention with multichannel auditory inputs, Electroenceph. Clin. Neurophysiol. 38:131–138.Google Scholar
  90. Shakow, D., 1971, Some observations on the psychology (and some fewer in the biology) of schizophrenia, J. Nerv. Ment. Dis. 153:300–316.Google Scholar
  91. Shakow, D., 1977, “Schizophrenia, Selected Papers. Psychology Issues 10, No. 2,” International Universities Press, New York.Google Scholar
  92. Shute, C. C. D., and Lewis, P. R., 1967, The ascending cholinergic reticular systems: Neocortical, olfactory and subcortical projections, Brain 90: 497–520.Google Scholar
  93. Shute, C. C. D., and Lewis, P. R., 1975, Cholinergic pathways 1. Histochemical localization, Pharmacol. Ther. 1:79–87.Google Scholar
  94. Singh, M. M., 1981, Cholinergic mechanisms and the psychobiology of schizophrenia, in “Biological Psychiatry 1981,” C. Perris, G. Struwe and B. Jansson, eds., pp. 793–800, Elsevier/North Holland, Amsterdam.Google Scholar
  95. Singh, M. M., and Kay, S. R., 1982, Towards a psychobiological model of schizophrenia: A clinical neuroscientist’s view, in “Psychobiology of Schizophrenia,” M. Namba and H. Kaiya, eds., pp. 93–107, Pergamon Press, Oxford.Google Scholar
  96. Singh, M. M., and Lal, H., 1982, Central cholinergic mechanisms, neuroleptic action and schizophrenia, in “Neuropharmacology: Clinical Applications,” W. B. Essman and L. Valzelli, eds., pp. 337–389, Spectrum Publications, New York.Google Scholar
  97. Starzl, T. E., and Magoun, H. W., 1951, Organization of the diffuse thalamic projection system, J. Neurophysiol 14:133–146. Stevens, J. R., 1973, An anatomy of schizophrenia?, Arch. Gen. Psychiatry 29: 177–189.Google Scholar
  98. Taylor, M., and Abrams, R., 1974, Manic-depressive illness and paranoid schizophrenia: A phenomenological, family and treatment-response study, Arch. Gen. Psychiatry 31:640–642.Google Scholar
  99. Tecce, J. J., 1972, Contingent negative variation (CNV) and psychological processes in man, Psychol. Bull. 77:73–108.Google Scholar
  100. Teuber, H. L., 1976, Complex functions of basal ganglia, in “The Basal Ganglia,” M. D. Yahr, ed., pp. 151–168, Raven Press, New York.Google Scholar
  101. Torü, S., 1961, Two types of pattern of hippocampal electrical activity induced by stimulation of hypothalamus and surrounding parts of rabbit’s brain, Jpn. J. Physiol. 11:147–157.Google Scholar
  102. Turner, B. H., Mishkin, M., and Knapp, M., 1980, Organization of the amygdalopetal projections from modality–specific cortical association areas in the monkey, J. Comp. Neurol. 191–515–543.Google Scholar
  103. Ungerstedt, U., 1971, Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand. 197 (suppl. 367):1–48.Google Scholar
  104. Ungerstedt, U., and Pycock, C., 1974, Functional correlates of dopamine neurotransmission, Bull. Schweiz. Akad. Med. Wiss. 30:44–55.Google Scholar
  105. Van den Bercken, J. H. L., and Cools, A. R., 1979, Role of the neo-striatum in the initiation, continuation and termination of behavior, Appl. Neurophysiol. 42:106–108.Google Scholar
  106. Vanderwolf, C. H., 1969, Hippocampal electrical activity and voluntary movement in the rat, Electroencephalogr. Clin. Neurophysiol. 26:407–418.Google Scholar
  107. Vanderwolf, C. H., 1971, Limbic-diencephalic mechanisms of voluntary movement, Psychol. Rev. 78:83–113.Google Scholar
  108. Vanderwolf, C. H., and Robinson, T. E., 1981, Reticulo-cortical activity and behavior: A critique of the arousal theory and a new synthesis, Behay. Brain Sciences 4:459–514.Google Scholar
  109. Van Hoesen, G. W., and Pandya, D. N., 1975, Some connections of the entorhinal (area 28) and the perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents, Brain Res. 95: 1–24.Google Scholar
  110. Van Hoesen, G. W., Pandya, D. N., and Butters, N., 1975, Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents, Brain Res. 95: 25–38.CrossRefGoogle Scholar
  111. Villablanca, J. R., and Marcus, R. J., 1975, Effects of caudate nucleus removal in cats. Comparison with effects of frontal cortex ablation, UCLA Forum Med. Science 18: 273–311.Google Scholar
  112. Vinogradova, 0., 1970, Registration of information and the limbic system, in “Short-term Changes in Neural activity and Behavior,” G. Horn and R. H. Hinde, eds., Cambridge University Press, Cambridge.Google Scholar
  113. Warburton, D. M., 1974, The effect of scopolamine on a two-cue discrimination, Q. J. Exp. Psychol. 26:395–404.Google Scholar
  114. Warburton, D. M., and Heise, G. A., 1972, The effects of scopolamine on double alternation in rats, J. Comp. Physiol. Psychol. 81–523–532.Google Scholar
  115. Wesnes, K., and Warburton, D. M., 1983, Effects of scopolamine on stimulus sensitivity and response bias in a visual vigilance task, Neuropsychobiology 9: 154–157.Google Scholar
  116. Whitehouse, J. M., 1967, Cholinergic mechanisms in discrimination learning as a function of stimuli, J. Comp. Physiol. Psychol. 63:448–451.Google Scholar
  117. Whitlock, D. G., and Nauta, W. J. H., 1956, Subcortical projections from the temporal neocortex in macaca mulatta, J. Comp. Neurol. 106:183–212.Google Scholar
  118. Wilcott, R. C., Sabol, B. A., and Yurcheshen, R. P., 1976, Frontal cortex and response suppression in the rat, Brain Behay. Evol. 13:116–124.Google Scholar
  119. Walaas, I., and Fonnum, F., 1980, Biochemical evidence for glutamate as a transmitter in hippocampal efferents to the rat brain, Neuroscience 5 (10): 1691–1698.Google Scholar
  120. Wishart, T. B., and Mogenson, G. J., 1970, Effects of lesions of the hippocampus and septum before and after passive avoidance training, Physiol. Behay. 5:31–34.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Man Mohan Singh
    • 1
  1. 1.Department of PsychiatrySouthern Illinois University School of MedicineSpringfieldUSA

Personalised recommendations