Glycerol Utilization by Facilitated Diffusion Coupled to Phosphorylation in Bacteria

  • E. C. C. Lin


Escherichia coli and probably most other bacteria entrap glycerol by the tandem action of a cytoplasmic membrane protein which catalyzes facilitated diffusion and an ATP-dependent kinase subject to feedback inhibition. The facilitator protein behaves as though it provides an aqueous channel with an effective pore diameter of about 0.4 nm. The kinase is also not highly specific, since, in addition to glycerol, the enzyme can phosphorylate dihydroxyacetone and Lglyceraldehye. Under physiological conditions, however, the two proteins appear to function as a complex, and together they impose a more stringent substrate specificity.

Whereas wild-type E. coli can grow at a maximal rate on glycerol at concentrations well below 0.05 mM, mutants lacking the facilitator require at least 5 mM of the compound to achieve full growth rate. Utilization of glycerol as sole carbon and energy source by wild-type cells is rate-limited by the action of fructose-1,6-bisphosphate as a noncompetitive inhibitor. Utilization of glycerol in the presence of glucose is prevented at least in part by increased concentration of dephosphorylated factor IIIGlc of the phosphoenolpyruvate phosphotransferase system. This effect seems to be exerted either on the kinase alone or on both the kinase and the facilitator.

Glycerol is bactericidal to mutants synthesizing high levels of a kinase which is insensitive to feedback control by fructose-1, 6-bisphosphate. The cells are killed by the copious production of methylglyoxal from the elevated pool of dihydroxyacetone phosphate. In contrast, glycerol is bacteriostatic to mutants blocked in the dehydrogenation of sn-glycerol 3-phosphate.

It is suggested that the evolution of a concentrative mechanism for the uptake of glycerol in bacterial and other kinds of cells is prevented by the high intrinsic permeability of biological membranes to the compound, a property which would make active transport a Sisyphean process.


Catabolite Repression Glycerol Kinase Glycerol Uptake Glycerol Utilization Concentrative Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alemohammad, M.M., and Knowles, C.J., 1974, Osmotically induced volume and turbidity changes of Escherichia coli due to salts, sucrose and glycerol, with particular reference to rapid permeation of glycerol into the cell, J. Gen. Microbiol., 82: 125.PubMedGoogle Scholar
  2. Avi-Dor, Y., Kuczynski, M., Schatzberg, G., and Mager, I., 1956, Turbidity changes in bacterial suspensions: kinetics and relation to metabolic state, J. Gen. Microbiol., 14: 76.PubMedGoogle Scholar
  3. Berman, M., and Lin, E.C.C., 1971, Glycerol-specific revertants of a phosphoenolpyruvate phosphotransferase mutant: suppression by the desensitization of glycerol kinase to feedback inhibition, J. Bacteriol., 105: 113.PubMedGoogle Scholar
  4. Berman, M., Zwaig, N., and Lin, E.C.C., 1970, Suppression of a pleiotropic mutant affecting glycerol dissimilation, Biochem. Biophys. Res. Commun., 38: 272.PubMedCrossRefGoogle Scholar
  5. Berman-Kurtz, M., Lin, E.C.C., and Richey, D.P., 1971, Promoter-like mutant with increased expression of the glycerol kinase operon of Escherichia coli, J. Bacteriol., 106: 724.PubMedGoogle Scholar
  6. Bisson, L.F., and Fraenkel, D.G., 1983a, Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 80: 1730.PubMedCrossRefGoogle Scholar
  7. Bisson, L.F., and Fraenkel, D.G., 1983b, Transport of 6-deoxyglucose in Saccharomyces cerevisiae, J. Bacteriol., 155: 995.PubMedGoogle Scholar
  8. Boehler-Kohler, B.A., Boos, W., Dieterle, R., and Benz, R., 1979, Receptor for bacteriophage lambda of Escherichia coli forms larger pores in block lipid membranes than the matrix protein (porin), J. Bacteriol., 138: 33.PubMedGoogle Scholar
  9. Boos, W., Hartig-Beecken, I., and Altendorf, K., 1977, Purification and properties of a periplasmic protein related to sn-glycerol-3-phosphate transport in Escherichia coli, Eur. J. Biochem., 72: 571.PubMedCrossRefGoogle Scholar
  10. Bovell, C.R., Packer, L., and Helgerson, R., 1963, Permeability of Escherichia coli to organic compounds and inorganic salts measured by light-scattering, Biochim. Biophys. Acta, 75: 257.CrossRefGoogle Scholar
  11. Britten, R.J., and McClure, F.T., 1962, The amino acid pool in Escherichia coli, Bacteriol. Rev., 26: 292.PubMedGoogle Scholar
  12. Bublitz, C., and Kennedy, E.P., 1954, Synthesis of phosphatides in isolated mitochondria. III. Enzymatic phosphorylation of glycerol, J. Biol. Chem., 211: 951.PubMedGoogle Scholar
  13. Conrad, C.A., Stearns, G.W., Prater, W.E., Rheiner, J.A., and Johnson, J.R., 1984, Characterizatin of a glpK tranducing phage. Mol. Gen. Genet., 193: 376.PubMedCrossRefGoogle Scholar
  14. Cooper, R.A., and Anderson, J A., 1970, The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli, FEBS Lett., 11: 273.PubMedCrossRefGoogle Scholar
  15. Cozzarelli, N.R., Freedberg, W.B., and Lin, E.C.C., 1968, Genetic control of the L-a-glycerophosphate system in Escherichia coli, J. Mol. Biol., 31: 371.PubMedCrossRefGoogle Scholar
  16. Cozzarelli, N.R., Koch, J.P., Hayashi, S., and Lin, E.C.C., 1965, Growth stasis by accumulated L-a-glycerophosphate in Escherichia coli, J. Bacteriol., 90: 1325.PubMedGoogle Scholar
  17. Cozzarelli, N.R., and Lin, E.C.C., 1966, Chromosomal location of the structural gene for glycerol kinase in Escherichia coli, J. Bacteriol., 91: 1763.PubMedGoogle Scholar
  18. Danielli, J.F., 1954, The present position in the field of facilitated diffusion and selective active transport, p. 1, in: “Recent Developments in Cell Physiology,” J.A. Kitching, ed., Academic Press, New York.Google Scholar
  19. De Gier, J., Mandersloot, J.G., Hupkes, J.V., McElhaney, R.N., and Van Beek, W.P., 1971, On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes, Biochim. Biophys. Acta, 233: 610.PubMedCrossRefGoogle Scholar
  20. De Gier, J., Mandersloot, J.G., and Van Deenen, L.L.M., 1968, Lipid composition and permeability of liposomes, Biochim. Biophys. Acta, 150: 666.PubMedCrossRefGoogle Scholar
  21. De Gier, J., Van Deenen, L.L.M., and Van Senden, K.G., 1966, Glycerol permeability of erythrocytes, Experimentia, 22: 20.CrossRefGoogle Scholar
  22. de Riel, J.K., and Paulus, H., 1978a, Subunit dissociation in the allosteric regulation of glycerol kinase from Escherichia coli. I. Kinetic evidence, Biochemistry, 17: 5134.PubMedCrossRefGoogle Scholar
  23. de Riel, J.K., and Paulus, H., 1978b, Subunit dissociation in the allosteric regulation of glycerol kinase from Escherichia coli. 2. Physical evidence, Biochemistry, 17: 5141.PubMedCrossRefGoogle Scholar
  24. de Riel, J.K., and Paulus, H., 1978c, Subunit dissociation in the allosteric regulation of glycerol kinase from Escherichia coli. 3. Role in desensitization, Biochemistry, 17: 5146.Google Scholar
  25. Edgar, W., Forrest, I.S., Holms, W.H., and Jasani, B., 1972, The control of glycerol utilization by glucose metabolism, Biochem. J., 127: 59.Google Scholar
  26. Eze, M.O., and McElhaney, R.N., 1981, The effect of alterations in the fluidity and phase state of the membrane lipids on the passive permeation and facilitated diffusion of glycerol in Escherichia coli, J. Gen. Microbiol., 124: 299.PubMedGoogle Scholar
  27. Fischer, A., 1903, “Vorlesungen über Bakterien,” Gustav Fischer, Jena.Google Scholar
  28. Fraser, A.D.E., and Yamazaki, H., 1980, Characterization of an Escherichia coli mutant which utilizes glycerol in the absence of cyclic adenosine monophosphate, Can. J. Microbiol., 26: 393.PubMedCrossRefGoogle Scholar
  29. Freedberg, W.B., Kistler, W.S., and Lin, E.C.C., 1971, Lethal synthesis of methylglyoxal by Escherichia coli during unregulated glycerol metabolism. J. Bacteriol., 108: 137.PubMedGoogle Scholar
  30. Freedberg, W.B., and Lin, E.C.C., 1973, Three kinds of controls affecting the expresiosn of the glp regulon in Escherichia coli, J. Bacteriol., 115: 816.PubMedGoogle Scholar
  31. Hayashi, S.I., Koch, J.P., and Lin, E.C.C., 1964, Active transport of L-a-glycerophosphate in Escherichia coli, J. Biol. Chem., 239: 3098.PubMedGoogle Scholar
  32. Hayashi, S.-I., and Lin, E.C.C., 1965, Product induction of glycerol kinase in Escherichia coli, J. Mol. Biol., 14: 515.PubMedCrossRefGoogle Scholar
  33. Hayashi, S., and Lin, E.C.C., 1965, Capture of glycerol by cells of Escherichia coli, Biochim. Biophys. Acta, 94: 479.Google Scholar
  34. Hayashi, S., and Lin, E.C.C., 1967, Purification and properties of glycerol kinase from Escherichia coli, J. Biol. Chem., 242: 1030.PubMedGoogle Scholar
  35. Heller, K.B., Lin, E.C.C., and Wilson, T.H., 1980, Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli, J. Bacteriol., 144: 274.PubMedGoogle Scholar
  36. Hirschmann, H., 1960, The nature of the substrate asymmetry in stereoselective reactions, J. Biol. Chem., 235: 2762.PubMedGoogle Scholar
  37. Hopper, D.J., and Cooper, R.A., 1971, The regulation of Escherichia coli methylglyoxal synthase: a new control site in glycolysis? FEBS Lett., 13: 213.PubMedCrossRefGoogle Scholar
  38. Jacobs, M.H., 1931, The permeability of the erythrocyte, Ergebn. Biol., 7: 1.CrossRefGoogle Scholar
  39. Jacobs, M.H., 1950, Surface properties of the erythrocyte, Mn. N.Y. Acad. Sci., 50: 824.CrossRefGoogle Scholar
  40. Jacobs, M.H., 1954, A case of apparent physiological competition between ethylene glycol and glycerol, Biol. Bull., 107: 314.Google Scholar
  41. Jacobs, M.H., and Corson, S.A., 1934, The influence of minute traces of copper on certain hemolytic processes, Biol. Bull., 67: 325.Google Scholar
  42. Jacobs, M.H., and Stewart, D.R., 1946, Observations on an oligodynamic action of copper on human erythrocytes, Am. J. Med. Sci., 211: 246.PubMedGoogle Scholar
  43. Jin, R.Z., Forage, R.G., and Lin, E.C.C., 1982, Glycerol kinase as a substitute for dihydroxyacetone kinase in a mutant of Klebsiella pneumoniae, J. Bacteriol., 152: 1303.PubMedGoogle Scholar
  44. Kalckar, H., 1937, Phosphorylation in kidney tissue, Enzymologia, 2: 47.Google Scholar
  45. Kalckar, H., 1938, Formation of a new phosphate ester in kidney extracts, Nature, 142: 871.CrossRefGoogle Scholar
  46. Kalckar, H., 1939, The nature of phosphoric esters formed in kidney extracts, Biochem. J., 33: 631.PubMedGoogle Scholar
  47. Karrer, P., and Benz, P., 1926, Die Spaltung der Glycerin-α-phosphorsaure in optisch aktive Formen, Helvet. Chirn. Acta, 9: 23.CrossRefGoogle Scholar
  48. Koch, J.P., Hayashi, S.-I., and Lin, E.C.C., 1964, The control of dissimilation of glycerol and L-α-glycerophosphate in Escherichia coli, J. Biol. Chem., 239: 3106.PubMedGoogle Scholar
  49. Krymkiewicz, N., Dieguez, E., Rekarte, U.D., and Zwaig, N., 1971, Properties and mode of action of a bactericidal compound (= methylglyoxal) produced by a mutant of Escherichia coli, J. Bacteriol., 108: 1338.PubMedGoogle Scholar
  50. Kuritzkes, D.R., Zhang, X.-Y., and Lin, E.C.C., 1984, Use of Φ(glp-lac) in studies of respiratory control of the Escherichia coli anaerobic sn-glycerol-3-phosphate dehydrogenase genes 1pAB), J. Bacteriol., 157: 591.PubMedGoogle Scholar
  51. Larson, T.J., Ehrmann, M., and Boos, W., 1983, Periplasmic glycerophosphodiester phosphodiestrase of Escherichia coli, a new enzyme of the glp regulon, J. Biol. Chem., 258: 5428.PubMedGoogle Scholar
  52. Larson, T.J., Schumacher, G., and Boos, W., 1982, Identification of the gipT-encoded sn-glycerol-3-phosphate permease of Escherichia coli, an oligomeric integral membrane protein, J. Bacteriol., 152: 1008.PubMedGoogle Scholar
  53. Li, C.-C., and Lin, E.C.C., 1975, Uptake of glycerol by tumor cells and its control by glucose, Biochem. Biophys. Res. Commun., 67: 677.CrossRefGoogle Scholar
  54. Li, C.-C., and Lin, E.C.C., 1983, Glycerol transport and phosphorylation by rat hepatocytes, J. Cell. Physiol., 117: 230.PubMedCrossRefGoogle Scholar
  55. Lin, E.C.C., 1976, Glycerol dissimilation and its regulation in bacteria. Ann. Rev. Microbiol., 30: 535.CrossRefGoogle Scholar
  56. Lin, E.C.C., 1977, Glycerol utilization and its regulation in mammals, Ann. Rev. Biochem., 46: 765.CrossRefGoogle Scholar
  57. Lindgren, V., and Rutberg, L., 1976, Genetic control of the alp system in Bacillus subtilis, J. Bacteriol., 127: 1047.PubMedGoogle Scholar
  58. Luckey, M., and Nikaido, H., 1980, Specificity of diffusion channels produced by lambda phage receptor protein of Escherichia coli, Proc. Natl. Acad. Sci. USA, 77: 167.PubMedCrossRefGoogle Scholar
  59. Lueking, D., Tokuhisa, D., and Sojka, G., 1973, Glycerol assimilation by a mutant of Rhodopseudomonas capsulata, J. Bacteriol., 115: 897.PubMedGoogle Scholar
  60. Lueking, D., Pike, L., and Sojka, G., 1975, Glycerol utilization by a mutant of Rhodopseudomonas capsulata, J. Bacteriol., 125: 750.Google Scholar
  61. Ludtke, D., Larson, T.J., Beck, C., and Boos, W., 1982, Only one gene is required for the gipT-dependent transport of sn-glycerol3-phosphate in Escherichia coli, Mol. Gen. Genet., 186: 540.PubMedCrossRefGoogle Scholar
  62. Luria, S.E., 1965, On the evolution of the lactose utilization gene system in enteric bacteria, p. 357, in: “Evolving Genes and Proteins,” H.J. Vogel, ed., Academic Press, New York.Google Scholar
  63. Mager, J., Kuczynski, M., Schatsberg, G., and Avi-Dor, Y., 1956, Turbidity changes in bacterial suspensions in relation to osmotic pressure, J. Gen. Microbiol., 14: 69.PubMedGoogle Scholar
  64. McCowen, S.M., Phibbs, P.V., Jr., and Feary, T.W., 1981, Glycerol catabolism in wild-type and mutant strains of Pseudomonas aeruginosa, Cur. Microbiol., 5: 191.CrossRefGoogle Scholar
  65. Meadow, N.D., Saffen, D.W., Dottin, R.P., and Roseman, S., 1982, Molecular cloning the the crr gene and evidence that it is the structural gene for IIIGlc, a phosphocarrier protein of the bacterial phosphotransferase system, Proc. Natl. Acad. Sci. USA, 79: 2528.PubMedCrossRefGoogle Scholar
  66. Mitchell, P., and Moyle, J., 1956, Osmotic function and structure in bacteria, p. 150, in: “Bacterial Anatomy,” Sixth Symp. Soc. Gen. Microbiol., Cambridge University Press, London.Google Scholar
  67. Osumi, T., and Saier, M.H., Jr., 1982, Regulation of lactose permease activity by the phosphoenolpyruvate:sugar phosphotransferase system: evidence for direct binding of the glucose-specific enzyme III to the lactose permease, Proc. Natl. Acad. Sci. USA, 79: 1457.PubMedCrossRefGoogle Scholar
  68. Perlman, R.L., and Pastan, I., 1969, Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase deficient mutant of Escherichia coli, Biochem. Biophys. Res. Commun., 37: 151.Google Scholar
  69. Pike, L., 1982, Glycerol-utilizing mutants of Rhodopseudomonas capsulata, J. Bacteriol., 151: 500.PubMedGoogle Scholar
  70. Pike, L., and Sojka, G.A., 1975, Glycerol dissimilation in Rhodopseudomonas sphaeroides, J. Bacteriol., 124: 1101.PubMedGoogle Scholar
  71. Postma, P.W., and Roseman, S., 1976, The bacterial phosphoenolpyruvate:sugar phosphotransferase system, Biochim. Biophys. Acta, 457: 213.Google Scholar
  72. Richey, D.P., and Lin, E.C.C., 1972, Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli, J. Bacteriol, 112: 784.PubMedGoogle Scholar
  73. Richey, D.P., and Lin, E.C.C., 1973, Phosphorylation of glylcerol in Staphylococcus aureus, J. Bacteriol., 114: 880.PubMedGoogle Scholar
  74. Riddle, V., and Lorenz, F.W., 1968, Nonenzymic, polyvalent anion-catalyzed formation of methylglyoxal as an explanation of its presence in physiological systems, J. Biol. Chem., 243: 2718.PubMedGoogle Scholar
  75. Saier, M.H., Jr., and Feucht, B.U., 1975, Coordinate regulation of adenylate cyclase and carbohydrate permeases by the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium, J. Biol. Chem., 250: 7078.PubMedGoogle Scholar
  76. Saier, M.H., Jr., and Roseman, S., 1976, Sugar transport. The crr mutation: its effect on repression of enzyme synthesis, J. Biol. Chem., 251: 6598.PubMedGoogle Scholar
  77. Saier, M.H., Jr., Straud, H., Massman, L.S., Judice, J.J., Newman, M.J., and Feucht, B.U., 1978, Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system in Salmonella typhimurium, J. Bacteriol., 133: 1358.PubMedGoogle Scholar
  78. Sanno, Y., Wilson, T.H., and Lin, E.C.C., 1968, Control of permeation to glycerol in cells of Escherichia coli, Biochem. Biophys. Res. Commun., 32: 344.PubMedCrossRefGoogle Scholar
  79. Siegel, L.S., and Phibbs, P.V., Jr., 1979, Glycerol and L-a-glycerol-3phosphate uptake by Pseudomonas aeruginosa, Cur. Microbiol., 2: 251.CrossRefGoogle Scholar
  80. Sundararajan, T.A., 1963, Interference with glycerokinase induction in mutants of E. coli accumulating Gal-1-P, Proc. Natl. Acad. Sci. USA, 50: 463.PubMedCrossRefGoogle Scholar
  81. Thorner, J.W., and Paulus, H., 1971, Composition and subunit structure of glycerol kinase from Escherichia coli, J. Biol. Chem., 246: 3885.PubMedGoogle Scholar
  82. Thorner, J.W., and Paulus, H., 1973a, Catalytic and allosteric properties of glycerol kinase from Escherichia coli, J. Biol. Chem., 248: 3922.PubMedGoogle Scholar
  83. Thorner, J.W., and Paulus, H., 1973b, Glycerol and glycerate kinases, p. 487, in: “The Enzymes,” vol. 8, P.D. Boyer, ed., Academic Press, New York.Google Scholar
  84. Tsay, S.-S., Brown, K.K., and Gaudy, E.T., 1971, Transport of glycerol by Pseudomonas aeruginosa, J. Bacteriol., 108: 82.PubMedGoogle Scholar
  85. Zwaig, N., and Dieguez, E., 1970, Bactericidal product obtained from a mutant of Escherichia coli. J. Bacteriol., 102: 753.PubMedGoogle Scholar
  86. Zwaig, N., and Lin, E.C.C., 1966, Feedback inhibition of glycerol kinase, a catabolic enzyme in Escherichia coli, Science, 153: 755.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • E. C. C. Lin
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsHarvard Medical SchoolBostonUSA

Personalised recommendations