Unilateral Electrolytic and 6-Ohda Lesions of the Substantia Nigra in Baboons: Behavioural and Biochemical Data

  • Francois Viallet
  • Elisabeth Trouche
  • André Nieoullon
  • Daniel Beaubaton
  • Eric Legallet
Part of the Advances in Behavioral Biology book series (ABBI, volume 27)

Abstract

The role of the substantia nigra (SN) in the control of motor activity has mainly been analyzed through clinical data on Parkinson’s disease in human subjects (Marsden, 1982). This disease has been known for a long time to involve progressive degeneration of the pigmented neurons in the SN (Tretiakoff, 1919; Hassler, 1938). Identification of the nigrostriatal dopaminergic projection (Anden et al., 1964) from these pigmented neurons gave rise to studies in which striatal dopamine (DA) deficit was proved to be responsible for the onset of the symptoms of Parkinsonism, particularly akinesia and rigidity (Hornyckiewicz, 1966; Bernheimer et al., 1973). Besides these clinical observations on human patients, a body of experimental work has been published on animals (see Schultz, 1982) discussing the functional role of the SN.

Keywords

Phenol Dopamine Cage Tyrosine Adenosine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agid, Y., Javoy, F., Glowinski, J., Bouvet, D., and Sotelo, C., 1973, Injection of 6-hydroxydopamine into the substantia nigra of the rat. II. Diffusion and specificity. Brain Res., 58:291–301.CrossRefGoogle Scholar
  2. Agid, Y., Javoy, F., and Glowinski, J., 1974, Chemical or electrolytic lesion of the substantia nigra: early effects on neostriatal dopamine metabolism. Brain Res., 74:41–49.CrossRefGoogle Scholar
  3. Albers, R. W., and Brady, R. O., 1959, The distribution of glutamic decarboxylase in the nervous system of the rhesus monkey, J. Biol. Chem., 234:926–928.Google Scholar
  4. Anden, N. E., Carlsson, A., Dahlstrom, A., Fuxe, K., Hillard, N. A., and Larsson, K., 1964, Demonstration and mapping out of nigrostriatal dopamine neurons. Life Sci., 3:523–530.CrossRefGoogle Scholar
  5. Beaubaton, D., Trouche, E., Amato, G., and Legallet, E., 1981, Perturbations du déclenchement et de 1’execution d’un mouvement visuellement guidé chez le babouin au cours du refroidissement et après lésion du segment interne du globus pallidus. J. Physiol. (Paris), 77:107–118.Google Scholar
  6. Beaubaton, D., and Trouche, E., 1982, Participation of the cerebellar dentate nucleus in the control of a goal-directed movement in monkeys, Exp. Brain Res., 46:127–138.CrossRefGoogle Scholar
  7. Bernheimer, H., Birkmayer, W., Hornkiewicz, O., Jellinger, K. and Seitelberger, F., 1973, Brain dopamine and the syndromes of Parkinson and Huntington. Clinical: morphological and neurochemical correlations, J. Neurol. Sci., 20:415–455.Google Scholar
  8. Carpenter, M. B., and McMasters, R. E., 1964, Lesions of the substantia nigra in the rhesus monkey. Efferent fiber degenerations and behavioural observations. Amer. J. Anat., 114:293–319.CrossRefGoogle Scholar
  9. Carpenter, M. B., 1976, Anatomical organization of the corpus striatum and related nuclei, in: “The Basal Ganglia,” M. D. Yahr, ed, Raven Press, New York.Google Scholar
  10. Carpenter, M. B., Nakano, K., and Kim, R., 1976, Nigrothalamic projections in the monkey demonstrated by autoradiographic technics, J. Comp. Neurol., 165:401–416.CrossRefGoogle Scholar
  11. Cooke, J. D., Brown, J. D., and Brooks, V. B., 1978, Increased dependence on visual information for movement control in patients with Parkinson’s disease. Can. J. Neurol. Sci., 5:413–415.Google Scholar
  12. Crossman, A. R., and Sambrook, M. A., 1978, Experimental torticollis in the monkey produced by unilateral 6-hydroxy-dopamine brain lesions. Brain Res., 149:498–502.CrossRefGoogle Scholar
  13. Delong, M. R., and Coyle, J. T., 1979, Globus pallidus lesions in the monkey produced by kainic acid: histologic and behavioural effects, Appl. Neurophysiol., 42:95–97.Google Scholar
  14. Delong, M. R. and Georgopoulos, A. D., 1979, Motor functions of the basal ganglia as revealed by studies of single cell activity in the behaving primate, in “Advances in Neurology,” Vol. 24, L. J. Poirier, T. L. Sourkes and P. J. Bedard, eds.. Raven Press, New York.Google Scholar
  15. Delong, M. R. and Georgopoulos, A. P., 1981, Motor functions of the basal ganglia, in: “Handbook of Physiology”, sect. 1: “The Nervous System”, Vol. II, Part 2, V. B. Brooks, ed.Google Scholar
  16. Delong, M. R., Crutcher, M. D., and Georgopoulos, A. P., 1983, Relations between movement and single cell discharge in the substantia nigra of the behaving monkey. The Journal of Neuroscience, 3 (8):1589–1606.Google Scholar
  17. Denny-Brown, D., 1962, “The Basal Ganglia and Their Relation to Disorders of Movement,” Oxford University Press, London.Google Scholar
  18. Di Chiara, G., Porceddu, M. L., Morelli, M., Mulas, M. L., and Gessa, G. L., 1979, Evidence for a GABAergic projection from the substantia nigra to the ventromedial thalamus and to the superior colliculus of the rat. Brain Res., 176:273–284.CrossRefGoogle Scholar
  19. Evarts, E. V., Teravainen, H., and Calne, D. B., 1981, Reaction time in Parkinson’s disease. Brain, 104:167–186.CrossRefGoogle Scholar
  20. Feeneyi D. M., and Wier, C. S., 1979, Sensory neglect after lesions of substantia nigra or lateral hypothalamus: differential severity and recovery of function. Brain Res., 178:329–346.CrossRefGoogle Scholar
  21. Feger, J., 1981, Les ganglions de la base: aspects anatomiques et electrophysioliques, J. Physiol. (Paris), 77: 7–44.Google Scholar
  22. Fibiger, H. C., Phillips, A. G. and Clouston, R. A., 1973, Regulatory deficits after unilateral electrolytic or 6-OHDA lesions of the substantia nigra, Amer. J. Physiol., 225:1282–1287.Google Scholar
  23. Flowers, K. A., 1976, Visual “closed-loop” and “open-loop” characteristics of volxintary movement in patients with parkinsonism and intention tremor. Brain, 99:269–310CrossRefGoogle Scholar
  24. Fonnum, F., 1972, Application of microchemical analysis and sub cellular fractionation technique to the study of neurotransmitters in discrete areas of mammalian brain. Adv. Biochem. Psychopharmacol., 6:75–88.Google Scholar
  25. Forni, C., and Nieoullon, A., 1983, Electrochemical detection of dopamine release in the striatum of freely moving hamsters. Brain Res, (in press).Google Scholar
  26. Glick, S. D., Jerussi, T. P., and Fleisher, L. N., 1976, Turning in circles: the neuropharmacology of rotation. Life Sci., 18:889–896.CrossRefGoogle Scholar
  27. Goldstein, M., Anagnoste, B., Battista, A. F., Owen, W. S., and Nakatani, S., 1969, Studies of amines in the striatum in monkeys with nigral lesions, J. Neurochem., 16:645–653.CrossRefGoogle Scholar
  28. Gross, Ch., Feger, J., Seal, J., Haramburu, Ph. and Bioulac, B., 1982, Neuronal activity in area 4 and movement parameters recorded in trained monkeys after unilateral lesion of the substantia nigra, in: “Neuronal Coding of Motor Performance,” J. Massion, J. Paillard, W. Schultz, M. Wiesendanger, eds., Springer-Verlag, Berlin.Google Scholar
  29. Hallett, M., and Khoshbin, S., 1980, A physiological mechanism of bradykinesia. Brain, 103:301–314.CrossRefGoogle Scholar
  30. Hassler, R., 1938, Zur pathologie der paralysis agitans und des post encephalitischen parkinsonismus, J. Psychol. Neurol., 48:387–476.Google Scholar
  31. Hefti, F., Melamed, E., and Wurtman, R. J., 1980, Partial lesions of the dopaminergic nigrostriatal system in rat brain: biochemical characterization. Brain Res., 195:123–127.CrossRefGoogle Scholar
  32. Heilman, K. M., Bowers, D., Watson, R. T. and Greer, M., 1976, Reaction times in parkinson disease. Arch. Neurol. (Chic.)., 33:139–140.CrossRefGoogle Scholar
  33. Hore, J., Meyer-Lohmann, J., and Brooks, V. B., 1977, Basal ganglia cooling disables learned arm movements in monkey in the absence of visual guidance. Science, 195:584–586.CrossRefGoogle Scholar
  34. Hornyckiewicz, O., 1966, Dopamine (3-Hydroxytyramine) and brain function, Pharmac. Rev., 18:925–964.Google Scholar
  35. Krueger, B. K., Forn, J., Walters, J. R., Roth, R. H., and Greengard, P., 1976, Stimulation by dopamine of adenosine cyclic 3.5-monophosphate formation in rat caudate nucleus: effect of lesions of the nigro neostriatal pathway, Molec. Pharmac., 12:639–648.Google Scholar
  36. Labuszewski, T., Lockwood, R., McManus, F. E., Edestein, L. R., Lidsky, T., 1981, Role of postural deficits in oro-ingestive problems caused by globus pallidus lesions, Exp. Neurol., 74:93–110.CrossRefGoogle Scholar
  37. Ljtxngberg, T., and Ungerstedt, U., 1976, Sensory inattention produced by 6-Hydroxydopamine induced degeneration of ascending dopamine neurons in the brain, Exp. Neurol., 53:585–600.CrossRefGoogle Scholar
  38. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J., 1951, Protein measurement with the folin phenol reagent, J. Biol. Chem., 193:265–275.Google Scholar
  39. Marsden, C. D., 1982, The mysterious motor function of the basal ganglia: the Robert Wartenberg lecture. Neurology, 32:514–539.CrossRefGoogle Scholar
  40. Marshall, J. F., 1979, Somatosensory inattention after dopamine-depleting intracerebral 6-OHDA injections: spontaneous recovery and pharmacological control. Brain Res., 177:311–324.CrossRefGoogle Scholar
  41. McGeer, E. G., Fibiger, H. C., McGeer, P. L., Brooke, S., 1973, Temporal changes in amine synthesizing enzymes of rat extrapyramidal structures after hemitransections or 6-Hydroxydopamine administration. Brain Res., 52:289–300.CrossRefGoogle Scholar
  42. Mishra, R. K., Marshall, A. M., and Varmuza, S. L., 1980, Supersensitivity in rat caudate nucleus: effects of 6-hydroxydopamine on the time course of dopamine receptor and cyclic AMP changes. Brain Res., 200:47–57CrossRefGoogle Scholar
  43. Nauta, H. J. W., 1979, A proposed conceptual reorganization of the basal ganglia and telencephalon, Neurosci., 4:1875–1881.CrossRefGoogle Scholar
  44. Nieoullon, A., Dusticier, N. 1982, Glutamate uptake, glutamate decarboxylase and choline acetyl-transferase in subcortical areas after sensorimotor cortical ablations in the cat. Brain Res. Bull., 10:287–293.CrossRefGoogle Scholar
  45. Pechadre, J. C., Larochelle, L:. Poirier, L. J., 1976, Parkinsonian akinesia, rigidity and tremor in the monkey. Histopathological and neuropharmacological study, J. Neurol. Sci., 28:147–157.CrossRefGoogle Scholar
  46. Poirier, L. J.. and Sourkes, T. L., 1965, Influence of the substantia nigra on the catecholamine content of the striatum. Brain, 88:181–192.CrossRefGoogle Scholar
  47. Puymirat, J., Javoy-Agid, F., Gaspar, P., Ploska, A., Prochiantz, A., and Agid, Y., 1979, Post mortem stability and storage in the cold of brain enzymes, J. Neurochem., 32:449–454.CrossRefGoogle Scholar
  48. Schultz, W., 1982, Depletion of dopamine in the striatum as an experimental model of Parkinsonism: direct effects and adaptive mechanisms. Prog, in Neurobiol., 18:121–166.CrossRefGoogle Scholar
  49. Schultz, W., Aebischer, P. and Ruffieux, A., 1982, The encoding of motor acts by the substantia nigra, in: “Neural Coding of Motor Performance,” J. Massion, J. Paillard, W. Schultz, M. Wiesendanger, eds., Springer-Verlag, Berlin.Google Scholar
  50. Schwartz, W. J., Gtinn, R. H., Sharp, F. R., and Evarts, E. V., 1976, Unilateral electrolytic lesions of the substantia nigra cause contralateral circling in rats. Brain Res., 105: 358–361.CrossRefGoogle Scholar
  51. Siegfried, B., and Bures, J., 1979, Conditioning compensates the neglect due to unilateral 6-OHDA lesions of substantia nigra in rats. Brain Res., 167:139–155.CrossRefGoogle Scholar
  52. Staunton, D. A., Wolfe, B. B., Groves, P. M., Molinoff, P. B., 1981, Dopamine receptor changes following destruction of the nigrostriatal pathway: lack of a relationship to rotational behavior. Brain Res., 211:315–328.CrossRefGoogle Scholar
  53. Stern, G., 1966, The effects of lesions in the substantia nigra. Brain, 89:449–478.CrossRefGoogle Scholar
  54. Tretiakoff, C., 1919, Contribution à l’étude de 1’anatomie pathologique du locus niger de Soemmering avec quelques déductions relatives à la pathologie des troubles du tonus musculaire de la maladie de Parkinson, Thèse Médecine, Paris.Google Scholar
  55. Trouche, E., and Beaubaton, D., 1980, Initiation of a goal-directed movement in the monkey, Exp. Brain Res., 40:311–321.CrossRefGoogle Scholar
  56. Trouche, E., Beaubaton, D., Amato, G., Viallet, F., Legallet, E., 1983a, Changes in reaction time after pallidal or nigral exclusion, in: “Advances in Neurology,” Vol. 40, R. G. Hassler, and J. F. Christ, eds.. Raven Press, New York (in press).Google Scholar
  57. Trouche, E., Beaubaton, D., Viallet, F., Legallet, E., 1983b, Central coding of movements direction: participation of the neocerebelltim and the basal ganglia as revealed by reaction time studies in monkeys, “Space Physiology.” F. Lestienne and A. Barthoz, eds. (in press).Google Scholar
  58. Ungerstedt, U., 1968, 6-Hydroxydopamine induced degeneration of central monoamines neurons, Eur. J. Pharmacol., 5:107–110.CrossRefGoogle Scholar
  59. Ungerstedt, U. and Arbuthnott, G. W., 1970, Quantitative recording rotational behaviour in rats after 6-Hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res., 21:485–493.CrossRefGoogle Scholar
  60. Viallet, F., Trouche, E., Beaubaton, D., Nieoullon, A., and Legallet, E., 1981, Bradykinesia following unilateral lesions restricted to the substantia nigra in the baboon, Neurosci. Lett., 24:97–102.CrossRefGoogle Scholar
  61. Viallet, F., Trouche, E., Beaubaton, D., Nieoullon, A., and Legallet, E., 1983, Motor impairment after unilateral electrolytic lesions of the substantia nigra in baboons: behavioural data with quantitative and kinematic analysis of a pointing movement. Brain Res., (in press).Google Scholar
  62. Waymire, J. C., Bjur, R., Weiner, N., 1971, Assay of tyrosine, hydroxylase by coupled decarboxylation of DOPA from (1 14C) L. tyrosine, Analyt. Biochem., 43:588–600.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Francois Viallet
    • 1
  • Elisabeth Trouche
    • 1
  • André Nieoullon
    • 1
  • Daniel Beaubaton
    • 1
  • Eric Legallet
    • 1
  1. 1.Institut de Neurophysiologie et PsychophysiologieC.N.R.SMarseille Cedex 9France

Personalised recommendations