Skip to main content

Can Enzymes Released from the Nigro-Striatal Pathway Act as Neuromodulators?

  • Chapter
The Basal Ganglia

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 27))

Abstract

“Neuromodulator” is a term widely used but rarely defined. Transmitters themselves are sometimes described as having a “modulatory” action on neuronal activity: clearly therefore, the term “neuromodulation” implies a mode of intercellular information transfer different from the familiar events occurring at the axonal synapse, following propagation of a presynaptic action potential. Hence it seems that the critical issue is the way a substance modifies neuronal activity, rather than the transmitter-status or otherwise, of the substance itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bunney, B. S., Aghajanian, G. K., and Roth, R. H., 1973, Comparison of effects of L-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic cells. Nature, New Biol., 24:123.

    Google Scholar 

  • Butcher, L. L. and Woolf, N. J., 1982, Monoaminergic-cholinergic relationships in the chemical communication matrix of the substantia nigra and neostriatum. Brain Res. Bull., 9:475.

    Article  Google Scholar 

  • Cheramy, A., Leviel, V., and Glowinski, J., 1981, Dendritic release of dopamine in the substantia nigra. Nature, 289:537.

    Article  Google Scholar 

  • Chubb, I. W., and Smith, A. D., 1975a, Isoenzymes of soluble and membrane-bound acetylcholinesterase in bovine splanchnic nerve and adrenal medulla, Proc. R. Soc. B., 191:245.

    Article  Google Scholar 

  • Chubb, I. W., and Smith, A. D., 1975b, Release of acetylcholinesterase into the perfusate from the ox adrenal gland, Proc. R. B., 191:263.

    Article  Google Scholar 

  • Chubb, I. W., Goodman, S., and Smith, A. D., 1976, Is acetylcholinesterase secreted from central neurons into the cerebrospinal fluid, Neuroscience, 1:57.

    Article  Google Scholar 

  • Chubb, I. W., Hodgson, A. J., and White, G. H., 1980, Acetylcholinesterase hydrolyses substance P, Neuroscience, 5:2065.

    Article  Google Scholar 

  • Cuello, A. C., Romero, E., and Smith, A. C., 1981, In vitro release of acetylcholinesterase from the rat substantia nigra, J Physiol., Lond., 312:14P.

    Google Scholar 

  • Dray, A., Gonge, T. J, Oakley, N. R., and Tanner, T., 1976, Evidence for the existence of a raphe projection to the substantia nigra in rat. Brain Res., 113:45.

    Article  Google Scholar 

  • Dray, A., 1979, The striatum and the substantia nigra: a commentary on their relationships, Neuroscience, 4:1407.

    Article  Google Scholar 

  • Emson, P. C., 1979, Peptides as neurotransmitter candidates in the mammalian CNS, Prog. Neurobiol., 13:61.

    Article  Google Scholar 

  • Fonnum, F., Grofova, I., Rinvik, E., Storm-Mathisen, J. and Walberg, F., 1974, Origin and distribution of glutamate decarboxylase in substantia nigra of the cat. Brain Res., 71:77.

    Article  Google Scholar 

  • Gaddtim, J. H., 1961, Push-pull cannulae, J. Physiol. Lond., 155: IP.

    Google Scholar 

  • Giorguieff, M. F., Le Foch, M. L., Glowinski, J., and Besson, M. J., 1977, Involvement of cholinergic presynaptic receptors of nicotinic and muscarinic types in the control of the spontaneous release of dopamine from striatal dopaminergic terminals in the rat, J. Pharmacol. Exp. Ther., 200:535.

    Google Scholar 

  • Glowinski, J. and Cheramy, A., 1981, Dendritic release of dopamine: its role in the substantia nigra, in: “Chemical Neurotransmission, 75 Years,” L. Stjarne, P. Hedqvist, H. Lagercrantz, and A. Wennmalm, eds.. Academic Press.

    Google Scholar 

  • Greenfield, S. A., Cheramy, A., Leviel, V., and Glowinski, J., 1980, In vivo release of acetylcholinesterase in the cat substantiae nigrae and caudate nuclei. Nature, 284:355.

    Article  Google Scholar 

  • Greenfield, S. A., Stein, J. F., Hodgson, A. J., and Chubb, I. W., 1981, Depression of nigral pars compacta cell discharge by exogenous acetylcholinesterase, Neuroscience, 6:2287.

    Article  Google Scholar 

  • Greenfield, S. A., and Shaw, S. G., 1982, Amphetamine-evoked release of acetylcholinesterase and aminopeptidase, in vivo, Neuroscience, 7:2883.

    Article  Google Scholar 

  • Greenfield, S. A., Cheramy, A., and Glowinski, J., 1983a, Evoked release of proteins from central neurons in vivo, J. Neurochem., 40:1048.

    Article  Google Scholar 

  • Greenfield, S. A., Grunewald, R. A., Foley, P., and Shaw, S. G., 1983b, Origin of various enzymes released from the substantia nigra and caudate nucleus: effects of 6-hydroxydopamine lesions of the nigro-striatal pathway, J. Comp. Neurol., 214:87.

    Article  Google Scholar 

  • Greenfield, S. A., Chubb, I. W., Grunewald, R. A., Henderson, Z., May, J., Portnoy, S., Weston, J., and Wright, M. C., 1983c, A non-cholinergic function for acetylcholinesterase in the substantia nigra: behavioural evidence, Exptl. Brain Res., (in press).

    Google Scholar 

  • Groves, P. M., Wilson, C. J., Young, G. J., and Rebec, G. V., 1975, Self-inhibition by dopaminergic neurons. Science, 190:522.

    Article  Google Scholar 

  • Hefti, F., and Lichtensteiger, W., 1978, Subcellular distribution of dopamine in substantia nigra of the rat brain: effects of alphabutyrolactone and destruction of noradrenergic afferents suggest formation of particles from dendrites, J. Neurochem., 30:1217.

    Article  Google Scholar 

  • Hines, J. F., and Garwood, M. M., 1977, Release of protein from axons during rapid axonal transport: an in vitro preparation. Brain Res., 125:141.

    Article  Google Scholar 

  • Kimura, H., McGeer, P. L., Peng, J. H., and McGeer, E. G., 1981, The central cholinergic system studied by choline aeetyltransferase immunohistochemistry in the cat, J. Comp. Neurol., 200:157.

    Article  Google Scholar 

  • Lehmann, J., and Fibiger, H. C., 1978, Acetylcholinesterase in substantia nigra and caudate-putamen: properties and localization in dopaminergic neurons, J. Neurochem., 30:615.

    Article  Google Scholar 

  • Leviel, V., Cheramy, A., and Glowinski, J., 1979, Role of dendritic release of dopamine in the reciprocal control of the two nigrostriatal dopaminergic pathways. Nature, 280:236.

    Article  Google Scholar 

  • Levey, A. I., Wainer, B. H., Mufson, E. J., and Mesulam, M. -M., 1983, Co-localization of acetylcholinesterase and choline aeetyltransferase in the rat cerebrum, Neuroscience, 9:9.

    Article  Google Scholar 

  • Liesli, P., Panula, P., and Rechardt, L., 1980, Ultrastructural localization of acetylcholinesterase activity in primary cultures of rat substantia nigra. Histochemistry, 70:7.

    Article  Google Scholar 

  • Mercer, L., Del Fiacco, M., and Cuello, A. C., 1979, The smooth endoplasmic reticulum as a possible storage site for dendritic dopamine in substantia nigra neurons, Experimentia, 25:101.

    Google Scholar 

  • Pycock, C. J., 1980, Turning behaviour in animals, Neuroscience, 5:461.

    Article  Google Scholar 

  • Reubi, J. C., Iversen, L. L., and Hessell, T. M., 1977, Dopamine selectively increases GABA release from slices of rat substantia nigra in vitro. Nature, 268,652.

    Article  Google Scholar 

  • Shaw, S. G., 1978, D. Phil. Thesis, Oxford University.

    Google Scholar 

  • Silver, A., 1974, “The biology of the cholinesterasesElsevier, Amsterdam.

    Google Scholar 

  • Singer, M., 1969, Penetration of labelled amino acids into the peripheral nerve fibre from surrounding body fluids, in: “Growth of the Nervous System,” E. G. Wolstenholme and M. O’Connor, eds., Churchill, London.

    Google Scholar 

  • Singer, M., and Steinberg, M. C., 1972, Wallerian degeneration: a réévaluation based on transected and colchicine poisoned nerves in amphibian tritures. Am. J. Anat., 133:51.

    Article  Google Scholar 

  • Somogyi, A. D., and Bolam, J. P., 1982, Synaptic connections of substance P-immunoreactive nerve terminals in the substantia nigra of the rat. Cell Tissue Res., 223:469.

    Article  Google Scholar 

  • Ungerstedt, U., 1971, Post-synaptic supersensitivity after 6-hydroxy- dopamine induced degeneration of the nigro-striatal dopamine system. Acta Phys. Scand. Suppl., 367:69.

    Google Scholar 

  • Walker, R. J., Kemp, J. A., Yajima, H., Kitagawa, K., and Woodruff, G. N., 1976, The action of Substance P on mesenphalic reticular and substantia nigral neurons of the rat, Experientia, 32:214.

    Article  Google Scholar 

  • Wassef, M., Berod, A., Sotelo, C., 1981, Dopaminergic dendrites in the pars reticulata of the rat substantia nigra and their striatal input. Combined immunocytochemical localization of tyrosine hydroxylase and anterograde degeneration, Neuroscience, 6:2125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Greenfield, S.A. (1984). Can Enzymes Released from the Nigro-Striatal Pathway Act as Neuromodulators?. In: McKenzie, J.S., Kemm, R.E., Wilcock, L.N. (eds) The Basal Ganglia. Advances in Behavioral Biology, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1212-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1212-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1214-7

  • Online ISBN: 978-1-4684-1212-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics