Production of Resins by Arid-Adapted Astereae

  • Joseph J. Hoffmann
  • Barbara E. Kingsolver
  • Steven P. McLaughlin
  • Barbara N. Timmermann
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 18)

Abstract

The arid regions of the world and their native flora remain a largely unexplored frontier in the search for new plant chemicals. This search has been revived in recent years because, in addition to the scientific gains to be made through the study of the production and ecological significance of plant secondary metabolites, many of these compounds have practical value as well.

Keywords

Biomass Phenolic Resin Chlorophyll Rubber Photosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Solar Energy Research Institute 1981 A New Prosperity Building A Sustainable Energy Future. Brick House Publishing, Andover, MassGoogle Scholar
  2. 2.
    Calvin M 1979 Petroleum Plantations For Fuel And Materials. Bioscience 29: 533–538CrossRefGoogle Scholar
  3. 3.
    Palsson BO, S Fathi-Afshar, DF Rudd, EN Lightfoot 1981 Biomass As Source Of Chemical Feedstocks: An Economic Evaluation. Science 213: 513–517ADSCrossRefGoogle Scholar
  4. 4.
    Buchanan RA, IM Cull, FH Otey, CR Russell 1978 Hydrocarbon-And Rubber-Producing Crops. Econ Bot 32 131–153CrossRefGoogle Scholar
  5. 5.
    Duisberg, PC, JL Hay 1971 Economic Botany Of Arid Regions. In Wg Mcginnies, Bj Goldman, And P Paylore, Eds, Food, Fiber And The Arid Lands, University Of Arizona Press, Tucson, Pp 247–270.Google Scholar
  6. 6.
    Mclaughlin SP, JJ Hoffmann 1982 Survey Of Biocrude-Producing Plants From The Southwest. Econ Bot 36: 323–339CrossRefGoogle Scholar
  7. 7.
    Rodriguez E 1983 Cytotoxic And Insecticidal Chemicals Of Desert Plants. Jüi Pa Hedin, Ed, Plant Resistance To Insects Am Chem Soc Symp Ser, Vol 208, Am Chem Soc, Washington, Dc Pp 291–302Google Scholar
  8. 8.
    Shantz HL, RL Piemeisel 1924 Indicator Significance Of The Natural Vegetation Of The Southwestern Desert Region. J Agr Res 28: 721–801Google Scholar
  9. 9.
    Dell B 1977 Distribution And Function Of Resins And Glandular Hairs In Western Australian Plants. J Royal Soc West Aust 59: 119–123Google Scholar
  10. 10.
    Rhoades DF 1977 Integrated Antiherbivore, Antidesiccant And Ultraviolet Screening Properties Of Creosotebush Resin. Biochem Syst Ecol 5: 281–290CrossRefGoogle Scholar
  11. 11.
    Traub HP, Mcslattery, WL Mcrary 1940 The Effect Of Moisture Stress On Nursery-Grown Guayule With Reference To Changes In Reserve Carbohydrates. Am J Bot 33: 699–705Google Scholar
  12. 12.
    Hegnauer R 1964 Chemotaxonomie Der Pflanzen. Band 3 Dicotyledoneae: Acanthaceae-Cyrillaceae. Birkhauser-Verlag, StuttgartGoogle Scholar
  13. 13.
    Herz W 1977 Astereae, Chemical Review. In V. Heywood, JB Harborne And BL Turner, Eds, Biology And Chemistry Of The Compositae. Academic Press, New York, London Pp 567–576Google Scholar
  14. 14.
    Hoffmann JJ, SP Mclaughlin, SD Jolad, KH Schram, MS Tempesta, RB Bates 1982 Constitutents Of Chrysothamnus Paniculatus (Compositae) 1: Chrysothame, a new diterpene, and 6-oxogrindelic acid. J Org Chem 47: 1725–1727CrossRefGoogle Scholar
  15. 15.
    Timmermann BN, JJ Hoffmann, SD Jolad, KH Schram, RE Klenck, RB Bates 1982 Constituents Of Chrysothamnus Paniculatus (Compositae) 2: Chrysolic acid, a new labdane-derived diterpene with an aromatic B-ring. J Org Chem 47: 4114–4116Google Scholar
  16. 16.
    Timmermann BN, DJ Luzbetak, JJ Hoffmann, SD Jolad, KH Schram, RB Bates, RE Klenck 1983 Grindelane Diterpenoids From Grindelia Camporum And Chrysothamnus Paniculatus. Phytochemistry 22: 523–525CrossRefGoogle Scholar
  17. 17.
    Guerreiro E, J Kavka, J Saad, M Oriental, O Giordano 1981 Acidos Diterpénicos En Grindelia Pulchella Y G. Chiloensis. Rev Latinoamer Quirn 12: 77–81Google Scholar
  18. 18.
    Bohlmann F, U Fritz, H Robinson, RM King 1979 Isosesquicaren Aus Haplopappus Tenuisectus. Phytochemistry 18: 1749–1750CrossRefGoogle Scholar
  19. 19.
    Bohlmann F, M Ahmed, N Borthakur, M Wallmeyer, J Jakupovic, RM King, H Robinson 1982 Diterpenes Related To Grindelic Acid And Further Constituents From Grindelia Species. Phytochemistry 21: 167–172CrossRefGoogle Scholar
  20. 20.
    Rose A 1980 Grindelane Diterpenoids From Chrysothamnus Nauseosus. Phytochemistry 19: 2689–2693CrossRefGoogle Scholar
  21. 21.
    Gutierrez A, J Oberti, H Juliani 1981 Constituyentes Solidago Chilensis. Anales Asoc Quirn Argent 69: 27Google Scholar
  22. 22.
    Wagner H, M Iyengar, O Seligmann, L Horhammer, W Herz 1972 Chrysoeriol-7-Glucuronid In Grindelia Squarrosa. Phytochemistry 11: 2350CrossRefGoogle Scholar
  23. 23.
    Pinkas M, N Didry, M Torck, L Bézanger, JC Cazin 1978 Recherches Sur Les Polyphenols De Quelques Especes De Grindelia. Ann Pharm Franc 36: 97–104Google Scholar
  24. 24.
    Ruiz SO, E Guerreiro, OS Giordano 1981 Flavonoides En Tres Especies Del Género Grindelia. Anales Asoc Quirn Argent 69: 293–295Google Scholar
  25. 25.
    Bohlmann F, W Thefeld, C Zdero 1970 Über Die Inhaltsstoffe Von Grindelia-Arten. Chem Ber 103: 2245–2251CrossRefGoogle Scholar
  26. 26.
    Bohlmann F, T Burkhardt, C Zdero 1973 Naturally Occurring Acetylenes. Academic Press, LondonGoogle Scholar
  27. 27.
    Mangoni L, M Belardini 1962 Constituents Of Grindelia Robusta. Gazz Chim Ital 92: 983–994Google Scholar
  28. 28.
    Bruun T, L Jackman, E Stenhagen 1962 Grindelic And Oxygrindelic Acids. Acta Chem Scand 16: 1675–1681CrossRefGoogle Scholar
  29. 29.
    Rose A, K Jones, W Haddon, D Dreyer 1981 Grindelane Diterpenoid Acids From Grindelia Humilis: Feeding Deterrency Of Diterpene Acids Toward Aphids. Phytochemistry 20: 2249–2253Google Scholar
  30. 30.
    Dunford MP 1964 A Cytogenetic Analysis Of Certain Polyploids In Grindelia (Compositae). Am J Bot 51: 41–56CrossRefGoogle Scholar
  31. 31.
    Timmermann BN, JJ Hoffmann, SD Jolad, KH Schram, RE Klenck, RB Bates 1983 Constituents Of Chrysothamnus Paniculatus (Compositae) 3: 3j4,5-tricaffeoylquinic acid (a new shikimate prearomatic) and 3,4-, 3,5-, and 4,5-dicaffeoyl-quinic acids. J Nat Prod 46: 365–368CrossRefGoogle Scholar
  32. 32.
    Forliard N 1969 Contribution A V Etude De La Composition Ehimique De Lfherbe De Grindelia. J Pharm Belg 24: 397–414Google Scholar
  33. 33.
    Hohmann VB 1967 Botanisch-Varenkundliche Untersuchungen Innerhalb Der Gattung Grindelia. Plant Medica 15: 255–263CrossRefGoogle Scholar
  34. 34.
    Carlquist S 1960 Wood Anatomy Of Astereae (Compositae). Tropical Woods 113: 54–84Google Scholar
  35. 35.
    Metcalfe CR, L Chalk 1950 Anatomy Of The Dicotyledons. Oxford Univ PressGoogle Scholar
  36. 36.
    Mabry TJ, DR Difeo Jr, M Sakakibara, CF Bohnstedt Jr, D Scigler 1977 The Natural Products Chemistry Of Larrea. In TJ Mabry, Jh Hunziker, Dr Difeo Jr, Eds, Creosotebush: Biology And Chemistry Of Larrea In New World Deserts Dowden Hutchinson And Ross, Stroudsburg, Pa Pp 115–134Google Scholar
  37. 37.
    Dell B, AJ Mccomb 1975 Glandular Hairs, Resin Production, And Habitat Of Newcastelia Viscida E. Pritzel ( Dicrastylidaceae ). Aust J Bot 23: 373–390Google Scholar
  38. 38.
    Dell B, AJ Mccomb 1974 Resin Production And Glandular Hairs In Beyeria Viscosa (Labill.) Miq ( Euphorbiaceae ). Aust J Bot 25: 195–210Google Scholar
  39. 39.
    Dell B 1975 Geographical Differences In Leaf Resin Components Of Eremophila Fraseri F. Muell. (Myoporaceae) Aust J Bot 23: 889–897CrossRefGoogle Scholar
  40. 40.
    Schonherr J 1976 Water Permeability Of Cuticular Membranes. In Ol Lange, L Kappen, Ed Schulze, Eds, Water And Plant Life Springer-Verlag, Berlin Pp 148–159CrossRefGoogle Scholar
  41. 41.
    Hall DM, RL Jones 1961 Physiological Significance Of Surface Wax On Leaves. Nature (London) 191: 95–96ADSCrossRefGoogle Scholar
  42. 42.
    Chatterton NJ, WW Hanna, JB Powell, DR Lee 1975 Photosynthesis And Transpiration Of Bloom And Bloomless Sorghum Can J Plant Sci 55: 641–643CrossRefGoogle Scholar
  43. 43.
    Blum A 1975 Effect Of The Bm Gene On Epicuticular Wax And The Water Relations Of Sorghum Bicolor L. (Moench). Israel J Bot 24: 50–51Google Scholar
  44. 44.
    Mabry TJ, JE Gill 1979 Sesquiterpene Lactones And Other Terpenoids In Ga Rosenthal, Dh Janzen, Eds, Herbivores: Their Interaction With Secondary Plant Metabolites Academic Press New York, London Pp 501–537Google Scholar
  45. 45.
    Elliger CA, DF Zinkel, GB Chan, AC Waiss Jr 1976 Diterpene Acids As Larval Growth Inhibitors. Experientia 32: 1364–1366CrossRefGoogle Scholar
  46. 46.
    Burnett WC, Jr, SB Jones Jr, TJ Mabry, WG Padolina 1974 Sesquiterpene Lactones: Insect Feeding Deterrence In Vernonia. Biochem Syst Ecol 2: 25–29Google Scholar
  47. 47.
    Mcnay RE 1964 Emulsion Polymerization. Us Patent 3,157, 608Google Scholar
  48. 48.
    Mcnay RE, WR Peterson 1964 Treatment Of Synthetic Rubber. Us Patent 3,157, 609Google Scholar
  49. 49.
    Mcnay RE, WR Peterson 1965 Method Of Sizing Cellulose Fibers With Resinous Material From The Plant Grindelia And Products Thereof. Us Patent 3,186, 901Google Scholar
  50. 50.
    Zinkel DF 1975 Naval Stores: Silvichemicals From Pine. In Te Timell, Ed, Applied Polymer Symp No 28, John Wiley & Sons, New York Pp 309–327Google Scholar
  51. 51.
    Zinkel DF 1981 Turpentine, Rosin, And Fatty Acids From Conifers. In Is Goldstein, Ed, Organic Chemicals From Biomass. Chap 9 Crc Press Boca Raton, FlGoogle Scholar
  52. 52.
    Hannus K 1976 Lipophilic Extractives In Technical Foliage Of Pine (Pinus sylvestris). In TE Timell, ed, Applied Polymer Symp No 28, John Wiley & Sons, New York pp 485–501Google Scholar
  53. 53.
    Hoffmann JJ 1983 Arid lands plants as feedstocks for fuels and chemicals. Crit Rev Plant Sci 1: 95–116CrossRefGoogle Scholar
  54. 54.
    McLaughlin SP 1982 Plant terpenoids as economic products from arid lands. Paper presented to 1982 Annual Meet Soc Econ Bot, June 14–17, Tuscaloosa, ALGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Joseph J. Hoffmann
    • 1
  • Barbara E. Kingsolver
    • 1
  • Steven P. McLaughlin
    • 1
  • Barbara N. Timmermann
    • 1
  1. 1.Bioresources Research Facility, Office of Arid Lands StudiesUniversity of ArizonaTucsonUSA

Personalised recommendations