Neurofilament Transport in Axonal Regeneration

Implications for the Control of Axonal Caliber
  • Paul N. Hoffman
  • John W. Griffin
  • Donald L. Price
Part of the Advances in Neurochemistry book series (volume 22)


Regenerating axons have been intensively studied with regard to the mechanisms and determinants of elongation, and several lines of evidence suggest that the delivery of cytoskeletal proteins (tubulin and actin, in particular) are correlates of outgrowth and may be rate limiting (see Lasek and Hoffman, 1976; Wujck and Lasek. 1983). In addition lo changes in axonal length, regeneration involves marked changes in axonal caliber and in cytoskeletal composition. The rcgcneraling axon provides the best available system in which to test critically the hypotheses underlying several of our recent studies. These hypotheses are that neurofilament content is the major correlate of axonal caliber and that axonal neurofilament content is, in turn, determined, in large part, by neurofilament delivery via slow axonal transport. This review will first summarize the general problem of the determinants of axonal caliber and then focus on recent data from regenerating nerves. These data can be considered in terms of three regions of the regenerating axon—the proximal stump, the maturing sprouts, and the distal sprouts.


Radial Growth Axonal Transport Motor Axon Proximal Stump Internodal Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitkin, J. T., and Thomas, P. K., 1962, Retrograde changes in fibre size following nerve section, J. Anat. 96: 121–129.Google Scholar
  2. Berthold, C. H., 1978, Morphology of normal peripheral axons, in: Physiology and Pathobiology of Axons (S. G. Waxman, ed.), pp. 3–63, Raven Press, New York.Google Scholar
  3. Black, M. M., and Lasek, R. J., 1979, Slowing of the rate of axonal regeneration during growth and maturation, Exp. Neurol. 63: 108–119.PubMedCrossRefGoogle Scholar
  4. Bloom, G. S., and Vallée, R. B., 1983, Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells, J. Cell Biol. 96: 1523–1531.PubMedCrossRefGoogle Scholar
  5. Chou, S.-M., and Hartmann, H. A., 1965, Electron microscopy of focal neuroaxonal lesions produced by ß, ß′-iminodipropionitrile (IDPN) in rats, Acta Neuropathol. (Bed.) 4: 590–603.CrossRefGoogle Scholar
  6. Clark, A. W., Griffin, J. W., and Price, D. L., 1980, The axonal pathology in chronic IDPN intoxication, J. Neuropathol. Exp. Neurol. 39: 42–55.PubMedCrossRefGoogle Scholar
  7. Cragg, B. G., and Thomas, P. K., 1961, Changes in conduction velocity and fibre size proximal to peripheral nerve lesions, J. Physiol. (Lond.) 157: 315–327.Google Scholar
  8. Duncan, D., 1948, Alterations in the structure of nerves caused by restricting their growth with ligatures, J. Neuropathol. Exp. Neurol. 7: 261–273.PubMedCrossRefGoogle Scholar
  9. Ellisman, M. H., and Porter, K. R., 1980, Microtrabecular structure of the axoplasmic matrix: Visualization of cross-linking structures and their distribution, J. Cell Biol. 87: 464–479.PubMedCrossRefGoogle Scholar
  10. Friede, R. L., 1971, Changes in microtubules and neurofilaments in constricted, hypoplastic nerve fibers, Acta Neuropathol. (Berl.) [Suppl.] 5: 216–225.Google Scholar
  11. Friede, R. L., and Samorajski, T., 1970, Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice, Anat. Rec. 167: 379–388.PubMedCrossRefGoogle Scholar
  12. Greenman, M. J., 1913, Studies on the regeneration of the peroneal nerve of the albino rat: Number and sectional areas of fibers: Area relation of axis to sheath, J. Comp. Neurol. 23: 479–513.CrossRefGoogle Scholar
  13. Griffin, J. W., Drachman, D. B., and Price, B. L., 1976, Fast axonal transport in motor nerve regeneration, J. Neurobiol. 7: 355–370.PubMedCrossRefGoogle Scholar
  14. Griffin, J. W., Hoffman, P. N., Clark, A. W., Carroll, P. T., and Price, D. L., 1978, Slow axonal transport of neurofilament proteins: Impairment by ß, ß′-iminodipropionitrile administration, Science 202: 633–635.PubMedCrossRefGoogle Scholar
  15. Griffin, J. W., Fahnestock, K. E., Price, D. L., and Hoffman, P. N., 1983, Microtubule-neurofilament segregation produced by ß, ß′-iminodipropionitrile: Evidence for the association of fast axonal transport with microtubules, J. Neurosci. 3: 557–566.PubMedGoogle Scholar
  16. Griffin, J. W., Anthony, D. C., Fahnestock, K., Hoffman, P. N., and Graham, D. G., 1984, 3,4-Dimethyl-2,5-hexanedione impairs axonal transport of neurofilament proteins, J Neurosci. 4: 1516–1526.PubMedGoogle Scholar
  17. Gutmann, E., and Sanders, F. K., 1943, Recovery of fibre numbers and diameters in the regeneration of peripheral nerves, J. Physiol. (Lond.) 101: 489–518.Google Scholar
  18. Gutmann, E., Gutmann, L., Medawar, P. B., and Young, J. Z., 1942, The rate of regeneration of nerve, J. Exp. Biol. 19: 14–44.Google Scholar
  19. Hirokawa, N., 1982, Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method, J. Cell Biol. 94: 129–142.PubMedCrossRefGoogle Scholar
  20. Hirokawa, N., Glicksman, M. A., and Willard, M., 1984, Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton, J. Cell Biol. 98: 1523–1536.PubMedCrossRefGoogle Scholar
  21. Hoffman, P. N., and Lasek, R. J., 1975, The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol. 66: 351–366.PubMedCrossRefGoogle Scholar
  22. Hoffman, P. N., and Lasek, R. J., 1980, Axonal transport of the cytoskeleton in regenerating motor neurons: Constancy and change, Brain Res. 202: 317–333.PubMedCrossRefGoogle Scholar
  23. Hoffman, P. N., Lasek, R. J., Griffin, J. W., and Price, D. L., 1983, Slowing of the axonal transport of neurofilament protein during development, J. Neurosci. 3: 1694–1700.PubMedGoogle Scholar
  24. Hoffman, P. N., Griffin, J. W., and Price, D. L., 1984, Control of axonal caliber by neurofilament transport J. Cell Biol. (in press).Google Scholar
  25. Hursh, J. B., 1939, Conduction velocity and diameter of nerve fibers, Am J. Physiol. 127: 131–139.Google Scholar
  26. Ingebritsen, T. S., and Cohen, P., 1983, Protein phosphatases: Properties and role in cellular regulation, Science 221: 333–338.CrossRefGoogle Scholar
  27. Jones, S. M., and Williams, R. C., Jr., 1982, Phosphate content of the polypeptides of mammalian neurofilaments, J. Cell Biol. 95: 227a.Google Scholar
  28. Kreutzberg, G. W., and Schubert, P., 1971a, Volume changes in the axon during regeneration, Acta Neuropathol. (Berl.) 17: 220–226.CrossRefGoogle Scholar
  29. Kreutzberg, G. W., and Schubert, P., 1971b, Changes in axonal flow during regeneration of mammalian motor nerves, Acta Neuropathol. (Berl.) [Suppl.] 5: 70–75.Google Scholar
  30. Kuno, M., Miyata, Y., and Munoz-Martinez, E. J., 1974a, Differential reactions of fast and slow α-motoneurones to axotomy, J. Physiol. (Lond.) 240: 725–739.Google Scholar
  31. Kuno, M., Miyata, Y., and Munoz-Martinez, E. J., 1974b, Properties of fast and slow alpha motoneurones following motor reinnervation, J. Physiol. (Lond.) 242: 273–288.Google Scholar
  32. Lasek, R. J., and Black, M. M., 1977, How do axons stop growing? Some clues from the metabolism of the proteins in the slow component of axonal transport, in: Mechanisms, Regulation and Special Functions of Protein Synthesis in the Brain (S. Roberts, A. Lajtha, and W. H. Gispen, eds.), pp. 161–169, Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  33. Lasek, R. J., and Hoffman, P. N., 1976, The neuronal cytoskeleton, axonal transport and axonal growth, Cold Spring Harbor Conf. Cell Prolif. 3: 1021–1049.Google Scholar
  34. Leterrier, J.-F., Liem, R. K. H., and Shelanski, M. L., 1981, Preferential phosphorylation of the 150,000 molecular weight component of neurofilaments by a cyclic AMP-dependent, micro-tubule-associated protein kinase, J. Cell Biol. 90: 755–760.PubMedCrossRefGoogle Scholar
  35. Liem, R. K. H., Yen, S-H., Salomon, G. D., and Shelanski, M. L., 1978, Intermediate filaments in nervous tissues, J. Cell Biol. 79: 637–645.PubMedCrossRefGoogle Scholar
  36. Matus, A., Bernhardt, R., and Hugh-Jones, T., 1981, High molecular weight microtubule-asso-ciated proteins are preferentially associated with dendritic microtubules in brain, Proc. Natl. Acad. Sci. U.S.A. 78: 3010–3014.PubMedCrossRefGoogle Scholar
  37. Morris, J. R., and Lasek, R. J., 1982, Stable polymers of the axonal cytoskeleton: The axoplasmic ghost, J. Cell Biol. 92: 192–198.PubMedCrossRefGoogle Scholar
  38. Nystrom, B., 1968, Fibre diameter increase in nerves to “slow-red” and “fast-white” cat muscles during postnatal development, Acta Neurol. Scand. 44: 265–294.PubMedCrossRefGoogle Scholar
  39. Pant, H. C., Shecket, G., Gainer, H., and Lasek, R. J., 1978, Neurofilament protein is phospho-rylated in the squid giant axon, J. Cell Biol. 78: 23–27.CrossRefGoogle Scholar
  40. Papasozomenos, S. Ch., Binder, L. I., Bender, P. K., and Payne, M. R., 1983, The axonal cytoskeleton in the ß,ß′-iminodipropionitrile (IDPN) model, J. Neuropathol. Exp. Neurol. 42:310.Google Scholar
  41. Peters, A., and Vaughn, J. E., 1967, Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves, J. Cell Biol. 32: 113–119.PubMedCrossRefGoogle Scholar
  42. Roots, B. I., 1983, Neurofilament accumulation induced in synapses by leupeptin, Science 221: 971–972.PubMedCrossRefGoogle Scholar
  43. Schlaepfer, W. W., 1978, Observations on the disassembly of isolated mammalian neurofilaments, J. Cell Biol. 76: 50–56.PubMedCrossRefGoogle Scholar
  44. Schlaepfer, W. W., and Freeman, L. A., 1978, Neurofilament proteins of rat peripheral nerve and spinal cord, J. Cell Biol. 78: 653–662.PubMedCrossRefGoogle Scholar
  45. Takenaka, T., and Inomata, K., 1981, Axoplasmic transport of microtubule-associated proteins in the rat sciatic nerve, J. Neurobiol. 12: 479–486.PubMedCrossRefGoogle Scholar
  46. Tsukita, S., Usukura, J., Tsukita, S., and Ishikawa, H., 1982, The cytoskeleton in myelinated axons: A freeze-etch replica study, Neuroscience 7: 2135–2147.PubMedCrossRefGoogle Scholar
  47. Tytell, M., and Lasek, R. J., 1978, Axonal transport in guinea pig optic neurons: Each component consists of a distinct pattern of proteins, Neurosci. Abstr. 6:37.Google Scholar
  48. Vallée, R. B., DiBartolomeis, M. J., and Theurkauf, W. E., 1981, A protein kinase bound to the projection portion of MAP 2 (microtubule-associated protein 2), J. Cell Biol. 90: 568–576.PubMedCrossRefGoogle Scholar
  49. Weiss, P. A., and Mayr, R., 1971, Organelles in neuroplasmic (“axonal”) flow: Neurofilaments, Proc. Natl. Acad. Sci. U.S.A. 68: 846–850.PubMedCrossRefGoogle Scholar
  50. Willard, M., and Simon, C., 1981, Antibody decoration of neurofilaments, J. Cell Biol 89: 198–205.PubMedCrossRefGoogle Scholar
  51. Wujek, J. R., and Lasek, R. J., 1983, Correlation of axonal regeneration and slow component b in two branches of a single axon, J. Neurosci. 3: 243–251.PubMedGoogle Scholar
  52. Yamada, K. M., Spooner, B. S., and Wessells, N. K., 1971, Ultrastructure and function of growth cones and axons of cultured nerve cells, J. Cell Biol. 49: 614–635.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Paul N. Hoffman
    • 1
  • John W. Griffin
    • 2
  • Donald L. Price
    • 3
  1. 1.Department of OphthalmologyThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Departments of Neurology and NeuroscienceThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Departments of Pathology, Neurology, and NeuroscienceThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations