Skip to main content

Respiratory Chain O2 Requirements and the Metabolic Answer to Diffuse Ischemia of Mechanically Overloaded Left Ventricular Myocardium

  • Chapter
Oxygen Transport to Tissue-V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 169))

  • 118 Accesses

Abstract

Cardiac adaptation to mechanical overload proceeds in a three step manner (Meerson, 1969). After a short transitional period, a new steady state is usually attained before the heart fails. This period of enhanced metabolic activity (compensatory cardiac hypertrophy) can sometimes last over several weeks. In rats with a surgically induced aorto-caval communication (Hatt et al., 1980a), the compensated cardiac hypertrophy can persist over several months. Morphologically, the hearts from rats with a prolongated volume overload exhibit a decreased vascularization of the left ventricle (Rakusan et al., 1980). At the cellular level, the persistence of an activation of protein synthesis was suggested (Hatt et al., 1980a), the size of the left ventricular myocytes are increasing (Hatt et al., 1980b) and quantitative changes in intracellular organization appear (Anversa et al., 1971). The most striking modification is the increase in numerical density of the mitochondria resulting in an improved surface/volume ratio of mitochondria and decreased oxygen requirements for mitochondrial function (decreased cytochrome oxidase apparent KM [O2]; Moravec et al., 1981). In this work we tried to quantify the range of intracellular Po2’s compatible with the unimpaired mitochondrial function (full oxidation of the cytochrome oxidase).

This work was supported by INSERM (CRL no. 81 50 44).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anversa, P., Vitali-Mazza, L., Visioli, O., and Marchetti, G., 1971, Experimental cardiac hypertrophy: a quantitative ultrastructure study, J. Mol. Cell. Cardiol., 3: 213.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., 1976, Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of the mitochondria, Circ. Res., 38(Suppl. 1): 31.

    Google Scholar 

  • Chua, B., and Shrago, E., 1977, Reversible inhibition of adenine nucleotide translocase in bovine heart mitochondria by long chain acyl CoA esters. Comparison with atractyloside and bon-krekik acid, J. Biol. Chenu, 252: 6711.

    CAS  Google Scholar 

  • Feuvray, D., 1981, Structural, functional and metabolic correlates in ischemic hearts: effect of substrates, Am. J. Physiol., 240: 391.

    Google Scholar 

  • Garland, P.E., Shepherd, D., and Yates, D.W., 1965, Steady state concentrations of coenzyme A, acetyl coenzyme A and long chain fatty acyl CoA in rat liver mitochondria oxidizing palmitate, Biochem. J., 97: 587.

    PubMed  CAS  Google Scholar 

  • Hatt, P.Y., Rakusan, K., Gastineau, P., Laplace, M., and Cluzeaud, F., 1980a, Aorto-caval fistula in rat: an experimental model of heart overloading, Bas. Res. Cardiol., 75: 105.

    Article  CAS  Google Scholar 

  • Hatt, P.Y., Rakusan, K., Gastineau, P., and Laplace, M., 1980b, Morphometry and ultrastructure of heart hypertrophy induced by chronic volume overload, J. Mol. Cell. Cardiol., 11: 989.

    Article  Google Scholar 

  • Hochachka, P.W., 1980, “Living Without Oxygen”, Harvard University Press, Cambridge, London.

    Google Scholar 

  • Jöbsis, F.F., 1977, What is molecular oxygen sensor: What is a transduction process, in.: “Tissue Hypoxia and Ischemia”, M. Reivich, R. Coburn, S. Lahiri, B. Chance, eds., Plenum Press, New York.

    Google Scholar 

  • Leniger-Follert, E., and Lübbers, D.W., 1973, Determination of local myoglobin concentration in the guinea pig heart, Pflügers Arch., 341: 271.

    Article  PubMed  CAS  Google Scholar 

  • Lübbers, D.W., and Niesel, W., 1959, Der Kurzzeit-Spektralanalysator. Ein schnellarbeitendes Spektralphotometer zur laufenden Messung von Absorptions-bzw. Extinktionsspektren, Pflügers Arch. Ges. Physiol., 268: 286.

    Article  Google Scholar 

  • Mc Garry, J.D., and Foster, D.W., 1976, An improved and simplified radio isotope assay for the determination of free and esterified carnitine, J. Lipid Res., 17: 277.

    PubMed  CAS  Google Scholar 

  • Meerson, F.Z., 1969, The myocardium in hyperfunction hypertrophy and failure, Cire, Res., 25(Suppl. 2): 1.

    Google Scholar 

  • Mela, L., Goodwin, C.W., and Miller, L.D., 1976, In vivo control of mitochondrial enzyme concentrations and activity by oxygen, Am. J. Physiol., 231: 1811.

    PubMed  CAS  Google Scholar 

  • Moravec, J., 1980, Possible relationship between tissue levels of long chain acyl CoA and the ability of the overloaded myocardium to oxidize an excess of reduced pyridine nucleotide, FEBS Lett., 113: 134.

    Article  PubMed  CAS  Google Scholar 

  • Moravec, J., Corsin, A., Owen, P., and Opie, L.H., 1974, Effect of increased aortic pressure on fluorescence emission of isolated rat heart, J. Mol. Cell. Cardiol., 6: 187.

    Article  PubMed  CAS  Google Scholar 

  • Moravec, J., Moravec, M., and Hatt P.Y., 1981, Rate of pyridine nucleotide oxidation and cytochrome oxidase interaction with intracellular oxygen in hearts from rats with compensated volume overload, Pflügers Arch., 392: 106.

    Article  PubMed  CAS  Google Scholar 

  • Neely, J.R., Garber, D., Mc Donough, K., and Idell-Wenger, J., 1979, Relationships between ventricular function and intermediates of fatty acid metabolic during myocardial ischemia, in: “Ischemic Myocardium and Antianginal Drugs”, M.M. Winsburg, ed., Plenum Press, New York.

    Google Scholar 

  • Neely, J.R., Rovetto, M.J., Whitmar, J.T., and Morgan, H.E., 1973, Effect of ischemia on ventricular function and metabolism in the isolated working rat hearts, Am. J. Physiol., 225: 651.

    PubMed  CAS  Google Scholar 

  • Rakusan, K., Moravec, J., and Hatt, P.Y., 1980, Regional capillary supply to the normal and hypertrophied rat heart, Microvasc. Res., 20: 319.

    Article  PubMed  CAS  Google Scholar 

  • Whereat, A.F., Mull, F.E., and Orishimo, M.W., 1967, The role of succinate in the regulation of fatty acid synthesis of heart mitochondria, J. Biol. Chem., 242: 4013.

    PubMed  CAS  Google Scholar 

  • Wilson, D.F., Owen, C.S., and Erecinska, M., 1979, Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentrations, Arch. Biochem. Biophys., 195: 495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Moravec, J., Nzonzi, J., Bowe, C., Feuvray, D. (1984). Respiratory Chain O2 Requirements and the Metabolic Answer to Diffuse Ischemia of Mechanically Overloaded Left Ventricular Myocardium. In: Lübbers, D.W., Acker, H., Leniger-Follert, E., Goldstrick, T.K. (eds) Oxygen Transport to Tissue-V. Advances in Experimental Medicine and Biology, vol 169. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1188-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1188-1_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1190-4

  • Online ISBN: 978-1-4684-1188-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics