Skip to main content

Comparisons of Tunneling Spectroscopy with Other Surface Analytical Techniques

  • Chapter
Tunneling Spectroscopy

Abstract

When an organic chemist synthesizes a molecule for the first time, he employs a variety of techniques to characterize his new discovery. Probes ranging from x-ray diffraction to nuclear magnetic resonance are used to provide details on the structure and bonding in the sample. Since no single experiment can provide a complete spectrum of information, a variety of complementary studies must be performed. Similarly, to accurately characterize a surface, numerous techniques must be employed. Unfortunately, it is impossible to write a short chapter covering all surface sensitive probes in detail since volumes of material have been written on the subject. Even summarizing the advantages and disadvantages of the major techniques would require a multitude of pages and provide few new insights. Instead, I would like to take a different tack here and after introducing the basic areas of modern surface analysis, show how a variety of complementary surface analytical techniques can be brought to bear on a single chemisorption system. Hopefully this will prove to be an instructive approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. E. Evans, W. M. Bowser, and W. H. Weinberg, An XPS investigation of alumina thin films utilized in inelastic electron tunneling spectroscopy, Appl. Surf. Sci. 5, 258–274 (1980).

    Article  CAS  Google Scholar 

  2. C. D. Wagner, W. M. Riggs. L. E. Davis, and J. F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy (G. E. Muilenberg, ed.). Perkin-Elmer Corporation, Eden Prairie, Minnesota (1978).

    Google Scholar 

  3. T. N. Rhodin and J. W. Gadzuk, in The Nature of the Surface Chemical Bond (T. N. Rhodin and G. Ertl, eds.), pp. 113–274, North-Holland Publishing Company, Amsterdam (1979).

    Google Scholar 

  4. Photoemission and the Electronic Properties of Surfaces (B. Feuerbacher, B. Fitton, and R. F. Willis. eds.), John Wiley and Sons, Chichester (1978).

    Google Scholar 

  5. T. A. Carlson, Photoelectron and Auger Spectroscopy, Plenum Press, New York (1975).

    Google Scholar 

  6. P. Auger. On the Compound Photoelectric Effect, J. Phys. Radium 6, 205–208 (1925).

    Article  CAS  Google Scholar 

  7. J. J. Lander, Auger peaks in the energy spectra of secondary electrons from various materials, Phys. Rev. 91, 1382–1387 (1953).

    Article  CAS  Google Scholar 

  8. G. Ertl and J. Köppers, Low Energy Electrons and Surface Chemistry, pp. 17–52. Verlag Chemie, Germany (1974).

    Google Scholar 

  9. L. E. Davis. N. C. MacDonald, P. W. Palmberg, G. E. Riach, and R. E. Weber, Handbook of Auger Electron Spectroscopy, 2nd Ed., Physical Electronics Industries. Inc., Eden Prairie, Minnesota (1976).

    Google Scholar 

  10. D. T. Hawkins, Auger Electron Spectroscopy, A Bibliography: 1925–1975, Plenum Press, New York (1977).

    Google Scholar 

  11. A. Benninghoven, Surface investigation of solids by the statical method of secondary ion mass spectroscopy (SIMS), Surf. Sci. 35, 427–457 (1973).

    Article  CAS  Google Scholar 

  12. Proceedings of the Second International Conference on Secondary Ion Mass Spectroscopy (SIMS II), Stanford University, August, 1979 (A. Benninghaven, C. A. Evans, Jr., R. A. Powell, R. Shimitu, and H. A. Storms, eds.), Springer-Verlag, New York (1979).

    Google Scholar 

  13. W. L. Braun, A Review and Bibliography of Secondary Ion Muss Spectrometry (SIMS), Air Force Materials Laboratory Technical Report AFML-TR-79–4123 (1980).

    Google Scholar 

  14. S. A. Flodström, C. W. B. Martinsson, R. Z. Bachrach, S. B. M. Hagström, and R. S. Bauer, Ordered oxygen overlayer associated with chemisorption state on A1(111), Phys. Rev. Lett. 40, 907–910 (1978).

    Article  Google Scholar 

  15. N. V. Smith, in Photoemission in Solids I (M. Cardona and L. Ley, eds.) Topics in Applied Physics, Vol. 26, pp. 237–264, Springer-Verlag, New York (1978).

    Google Scholar 

  16. N. V. Smith, P. K. Larsen, and S. Chiang, Anisotropy of core-level photoemission from InSe, GaSe and cesiated W(001), Phys. Rev. B 16, 2699–2706 (1977).

    Article  CAS  Google Scholar 

  17. S. D. Kevan, D. H. Rosenblatt, D. Denley, B.-C. Lu, and D. A. Shirley Photoelectron-diffraction measurements of sulfur and selenium adsorbed on Ni(001), Phys. Rev. B 20, 4133–4139 (1979).

    Article  CAS  Google Scholar 

  18. G. Ertl and J. Köppers, Low Energy Electrons and Surface Chemistry, pp. 53–66, Verlag Chemie, Germany (1974).

    Google Scholar 

  19. H. Froitzheim, in Electron Spectroscopy for Surface Analysis (H. Ibach, ed.), pp. 205–250, Springer-Verlag, New York (1977).

    Book  Google Scholar 

  20. F. Pellerin. C. LeGressus, and D. Massignon. A secondary electron spectroscopy and electron loss spectroscopy study of the interaction of oxygen with a polycrystalline aluminum surface, Surf. Sci. 103, 510–523 (1981).

    Article  CAS  Google Scholar 

  21. P. A. Lee and J. B. Pendry, Theory of extended x-ray absorption fine structure, Phys. Rev. B 11, 2795–2811 (1975).

    Article  CAS  Google Scholar 

  22. J. H. Sinfelt, Structure of metal catalysts, Rev. Mod. Phys. 51, 569–589 (1979).

    Article  CAS  Google Scholar 

  23. P. H. Citrin, P. Eisenberger, and R. C. Hewitt, SEXAFS studies of iodine adsorbed on single crystal substrates, Surf. Sci. 89, 28–40 (1979).

    Article  CAS  Google Scholar 

  24. P. H. Citrin, P. Eisenberger, and R. C. Hewitt, Extended x-ray-absorption fine structure of surface atoms on single-crystal substrates: Iodine adsorbed on Ag(111), Phys. Rev. Lett. 41, 309–312 (1978).

    Article  CAS  Google Scholar 

  25. J. Pendry, Low Energy Electron Diffraction, Academic Press, New York (1974).

    Google Scholar 

  26. M. A. Van Hove and S. Y. Tong, Surface Crystallography by LEED, Springer-Verlag, New York (1979).

    Book  Google Scholar 

  27. D. G. Castner and G. A. Samorjai, Surface structures of adsorbed gases on solid surfaces. A tabulation of data reported by low-energy electron diffraction studies, Chem. Rev. 79, 233–252 (1979).

    Article  CAS  Google Scholar 

  28. C. G. Kinniburgh, A LEED study of MgO(100): III. Theory at off-normal incidence, J. Phys. C 9, 2695–2708 (1976).

    Article  CAS  Google Scholar 

  29. A. V. Crewe, J. Wall, and J. Langmore, Visibility of single atoms, Science 168, 1338–1340 (1970).

    Article  CAS  Google Scholar 

  30. M. S. Isaacson, J. Langmore, N. W. Parker, D. Kapf, and M. Utlaut, The study of the adsorption and diffusion of heavy atoms on light element substrates by means of the atomic resolution STEM, Ultramicroscopy 1, 359–376 (1976).

    Article  CAS  Google Scholar 

  31. P. K. Hansma, unpublished observations.

    Google Scholar 

  32. S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938).

    Article  CAS  Google Scholar 

  33. O. C. Wells, Scanning Electron Microscopy, McGraw Hill Book Company, New York (1974).

    Google Scholar 

  34. R. P. Eischens, W. A. Pliskin, and S. A. Francis, Infrared spectra of chemisorbed carbon monoxide, J. Chem. Phys. 22, 1786–1787 (1954).

    Article  Google Scholar 

  35. R. P. Eischens and W. A. Pliskin, The infrared spectra of adsorbed molecules, Adv. Catal. 10, 2–56 (1958).

    Google Scholar 

  36. L. H. Little, Infrared Spectra of Adsorbed Species, Academic Press, London (1966).

    Google Scholar 

  37. M. L. Hair, Infrared Spectroscopy of Surface Chemistry, Dekker, New York (1967).

    Google Scholar 

  38. A. T. Bell, in Vibrational Spectroscopies of Adsorbed Species (A. T. Bell and M. L. Hair, eds.), ACS Symposium Series, Vol. 137, pp. 13–36, American Chemical Society, Washington, D.C. (1980).

    Google Scholar 

  39. B. Besson, B. Moraweck, A. K. Smith, J. M. Basset, R. Psaro, A. Fusi, and R. Ugo, IR and EXAFS characterization of a supported osmium cluster carbonyl, J. Chem. Soc. Chem. Commun. 569–571 (1980).

    Google Scholar 

  40. L. H. Little, in Chemisorption and Reactions on Metal Films (J. R. Anderson, ed.), Vol. 1, pp. 490–513, Academic Press, New York (1980).

    Google Scholar 

  41. P. K. Hansma, Inelastic electron tunneling, Phys. Rep. 30, 145–206 (1977).

    Article  Google Scholar 

  42. J. Pritchard, T. Catterick, and R. K. Gupta, Infrared spectroscopy of chemisorbed carbon monoxide on copper, Surf. Sci. 53, 1–20 (1975).

    Article  CAS  Google Scholar 

  43. J. Pritchard, in Chemical Physics of Solids and their Surfaces (M. W. Roberts and J. M. Thomas, eds.), Vol. 7, pp. 157–179, The Chemical Society, London (1978).

    Google Scholar 

  44. A. M. Bradshaw and F. M. Hoffmann, The chemisorption of carbon monoxide on palladium single-crystal surfaces: IR spectroscopic evidence for localized site adsorption, Surf. Sci. 72, 513–535 (1978).

    Article  CAS  Google Scholar 

  45. A. Bradshaw, Vibrational spectrum of Rua (CO)12; Analogy with the adsorption system CO/Ru (001), J. Chem. Soc. Chem. Commun. 365–366 (1980).

    Google Scholar 

  46. H. A. Pearse and N. Sheppard, Possible importance of a “metal-surface selection rule” in the interpretation of the infrared spectra of molecules adsorbed on particulate metals; Infrared spectra from ethylene chemisorbed on silica-supported metal catalysts, Surf. Sci. 59, 205–217 (1976).

    Article  Google Scholar 

  47. J. G. Roth and M. J. Dignam, Concerning the influence of inert gas adsorption on the infrared spectrum of OH groups on powdered silica, Can. J. Chem. 54, 1388–1393 (1976).

    Article  CAS  Google Scholar 

  48. M. Moskovits and J. W. Hulse. Frequency shifts in the spectra of molecules adsorbed on metals, with emphasis on the infrared spectrum of adsorbed CO, Surf. Sci. 78, 397–418 (1978).

    Article  CAS  Google Scholar 

  49. R. M. Hammaker, S. A. Francis, and R. P. Eischens, Infrared study of intermolecular interactions for carbon monoxide chemisorbed on platinum, Spectrochim. Acta 21. 1295–1309 (1965).

    Article  CAS  Google Scholar 

  50. M. Scheffler. The influence of lateral interactions on the vibrational spectrum of adsorbed CO, Surf. Sci. 81, 562–570 (1979).

    Article  Google Scholar 

  51. D. L. Allara, in Vibrational Spectroscopies of Adsorbed Species (A. T. Bell and M. L. Hair, eds.), ACS Symposium Series, Vol. 137, pp. 37–50. American Chemical Society, Washington, D.C. (1980).

    Google Scholar 

  52. B. A. Marrow, in Vibrational Spectroscopies of Adsorbed Species (A. T. Bell and M. L. Hair, eds.), ACS Symposium Series. Vol. 137, pp. 119–140. American Chemical Society. Washington, D.C. (1980).

    Google Scholar 

  53. R. P. Van Duyne, in Chemical and Biochemical Applications of Lasers (C. B. Moore, ed.), Vol. 4, pp. 101–186, Academic Press, New York (1979).

    Google Scholar 

  54. T. E. Furtak and J. Reyes, A critical analysis of theoretical models for the giant Raman effect from adsorbed molecules, Surf. Sci. 93, 351–382 (1980).

    Article  CAS  Google Scholar 

  55. T. A. Egerton, A. H. Hardin, Y. Kozirovski, and N. Sheppard, Reduction of fluorescence from high-area oxides of the silica, y-alumina, silica-alumina and Y-zeolite types and Raman spectra for a series of molecules adsorbed on these surfaces, J. Catal. 32, 343–361 (1974).

    Article  CAS  Google Scholar 

  56. W. Krasser and A. Renouprez, in Proceedings of the International Conference on Vibrations in Adsorbed Layers, Jülich ( H. Ibach and S. Lehwald, eds.), pp. 175–180, Kernforschungsanlange, Jülich, Federal Republic of Germany (1978).

    Google Scholar 

  57. D. L. Jeanmaire and R. P. Van Duyne, Surface Raman spectroelectrochemistry, J. Electroanal. Chem. 84, 1–20 (1977).

    Article  CAS  Google Scholar 

  58. E. Burstein, C. Y. Chen, and S. Lundquist, in Proceedings of Joint US-USSR Symposium on the Theory of Light Scattering in Condensed Matter ( J. L. Birman, H. Z. Cummings, and H. K. Reband, eds.), pp. 479–498, Plenum Press, New York (1980).

    Google Scholar 

  59. J. C. Tsang, J. R. Kirtley, and J. A. Bradley, Surface-enhanced Raman spectroscopy and surface plasmons, Phys. Rev. Lett. 43, 772–775 (1979).

    Article  CAS  Google Scholar 

  60. J. R. Kirtley, in Vibrational Spectroscopies of Adsorbed Species (A. T. Bell and M. L. Hair, eds.), ACS Symposium Series, Vol. 137, pp. 217–245, American Chemical Society, Washington, D.C. (1980).

    Google Scholar 

  61. H. Ibach, Comparison of cross-sections in high resolution electron energy loss spectroscopy and infrared reflection spectroscopy, Surf. Sci. 66, 56–66 (1977).

    Article  CAS  Google Scholar 

  62. J. E. Demuth, K. Christmann, and P. N. Sanda, The vibrations and structure of pyridine chemisorbed of Ag(I I1): The occurrence of a compressional phase transformation, Chem. Phys. Lett. 76, 201–206 (1980).

    Article  CAS  Google Scholar 

  63. J. W. Davenport, W. Ho, and J. R. Schrieffer, Theory of vibrationally inelastic electron scattering from orientated molecules, Phys. Rev. B 17, 3115–3127 (1978).

    Article  CAS  Google Scholar 

  64. W. Ho, N. J. Dinardo, and E. W. Plummer, Angle-resolved and variable impact energy electron vibrational excitation spectroscopy of molecules adsorbed on surfaces, J. Vac. Sci. Technol. 17, 134–140 (1980).

    Article  CAS  Google Scholar 

  65. H. Taub, in Vibrational Spectroscopies of Adsorbed Species (A. T. Bell and M. L. Hair, eds.). ACS Symposium Series, Vol. 137, pp. 247–280, American Chemical Society, Washington, D.C. (1980).

    Google Scholar 

  66. J. Howard and T. C. Waddington, in Advances in Infrared and Raman Spectroscopy (R. J. H. Clarke and R. E. Hester, eds.), Vol. 7, pp. 86–222, Heyden and Sons, Ltd., London (1980).

    Google Scholar 

  67. H. Jobic, J. Tomkinson, J. P. Candy, P. Fouilloux, and A. J. Renouprez, The structure of benzene chemisorbed on Raney nickel; a neutron inelastic spectroscopy determination, Surf. Sci. 95, 496–510 (1980).

    Article  CAS  Google Scholar 

  68. A. C. Yang and C. W. Garland, Infrared studies of carbon monoxide chemisorbed on rhodium, J. Phys. Chem. 61, 1504–1512 (1957).

    Article  Google Scholar 

  69. D. J. C. Yates, L. L. Murrell, and E. B. Prestridge, Undispersed rhodium rafts: Their existence and topology, J. Catal. 57, 41–63 (1979).

    Article  CAS  Google Scholar 

  70. J. T. Yates, Jr., T. M. Duncan, S. D. Worley, and R. W. Vaughan, Infrared spectra of CO on Rh, J. Chem. Phys. 70, 1219–1224 (1979).

    Article  CAS  Google Scholar 

  71. N. Sheppard and T. T. Nguyen, in Advances in Infrared and Raman Spectroscopy (R J. H. Clark and R. E. Hester, eds.) Vol. 5, pp. 67–148, Heyden and Sons, Ltd., London (1978); and reference therein.

    Google Scholar 

  72. H. C. Yao and W. G. Rothschild, Infrared spectra of chemisorbed CO on Rh/y-Al2O3: Site distribution and molecular mobility, J. Chem. Phys. 68, 4774–4780 (1978).

    Article  CAS  Google Scholar 

  73. M. Primet, Infrared study of CO chemisorption of zeolite and alumina supported rhodium, J. Chem. Soc. Faraday Trans. 1 74, 2570–2580 (1978).

    Article  CAS  Google Scholar 

  74. G. C. Smith, T. P. Chojnacki, S. R. Dasgupta, K. Iwatate, and K. L. Waters, Surface supported metal cluster carbonyls. I. Decarbonylation and aggregation reactions of rhodium clusters on alumina, Inorg. Chem. 14, 1419–1421 (1975).

    Article  CAS  Google Scholar 

  75. H. Vinel, J. Latzel, H. Noller, and M. Ebel, Correlation between results of x-ray photoelectron spectroscopic studies and catalytic behavior of MgO, J. Chem. Soc. Faraday Trans. 1 74, 2092–2100 (1978).

    Google Scholar 

  76. J. L. Ogilvie and A. Wolberg, An internal standard for electron spectroscopy for chemical analysis studies of supported catalysts, Appl. Spectrosc. 26, 401–403 (1972).

    Article  CAS  Google Scholar 

  77. R. M. Kroeker, W. C. Kaska, and P. K. Hansma, How carbon monoxide bonds to alumina-supported rhodium particles; Tunneling spectroscopy measurements with isotopes, J. Catal. 57, 72–79 (1979).

    Article  CAS  Google Scholar 

  78. L. H. Dubois, P. K. Hansma, and G. A. Somorjai, The application of high-resolution electron energy loss spectroscopy to the study of model supported metal catalysts, Appl. Surf. Sci. 6, 173–184 (1980).

    Article  CAS  Google Scholar 

  79. M. F. Muldoon, R. A. Dragoset, and R. V. Coleman, Tunneling asymmetries in doped Al—A1Oz—Pb junctions, Phys. Rev. B 20, 416–429 (1979).

    Article  CAS  Google Scholar 

  80. D. G. Walmsely, R. B. Floyd, and W. E. Timms, Conductance of clean and doped tunnel junctions, Solid State Commun. 22, 497–499 (1977).

    Article  Google Scholar 

  81. P. K. Hansma, D. A. Hickson, and J. A. Schwarz, Chemisorption and catalysis on oxidized aluminum metal J. Catal. 48237–242 (1977).

    Google Scholar 

  82. W. M. Bowser and W. H. Weinberg, The nature of the oxide barrier in inelastic electron tunneling spectroscopy, Surf. Sci. 64, 377–392 (1977).

    Article  CAS  Google Scholar 

  83. A. F. Beck, M. A. Heine, E. J. Caule, and M. J. Pryor, The kinetics of the oxidation of Al in oxygen at high temperature. Corrosi. Sci. 7, 1–22 (1967).

    Article  CAS  Google Scholar 

  84. L. H. Dubois and G. A. Somorjai, The chemisorption of CO and CO2 on Rh(111) studied by high resolution electron energy loss spectroscopy, Surf. Sci. 91, 514–532 (1980).

    Article  CAS  Google Scholar 

  85. R. Whyman, Dirhodium octacarbonyl, J. Chem. Soc. Chem. Commun. 1194–1195 (1970).

    Google Scholar 

  86. W. P. Griffith and A. J. Wickham, Vibrational spectra of metal—metal bonded complexes of group VIII, J. Chem. Soc. 1969, 834–839.

    Google Scholar 

  87. C. W. Garland and J. R. Wilt, Infrared spectra and dipole moments of Rh2(CO)4C12 and Rh,(CO)4BR2, J. Chem. Phys. 36, 1094–1095 (1962).

    Article  CAS  Google Scholar 

  88. C. W. Garland, R. C. Lord, and P. F. Troiano, An infrared study of high-area metal films evaporated in carbon monoxide, J. Phys. Chem. 69, 1188–1195 (1965).

    Article  CAS  Google Scholar 

  89. R. M. Kroeker, W. C. Kaska, and P. K. Hansma, Sulfur modifies the chemisorption of carbon monoxide on rhodium/alumina model catalysts, J. Catal. 63, 487–490 (1980).

    Article  CAS  Google Scholar 

  90. J. R. Kirtley and P. K. Hansma, Effect of the second metal electrode on vibrational spectra in inelastic-electron tunneling spectroscopy, Phys. Rev. B 12, 531–536 (1975).

    Article  CAS  Google Scholar 

  91. A. Bayman, P. K. Hansma, and W. C. Kaska, Shifts and dips in inelastic electron tunneling spectra due to the tunnel junction environment, Phys. Rev. B, 25, 2449–2455 (1981).

    Article  Google Scholar 

  92. R. M. Kroeker and P. K. Hansma, unpublished observations.

    Google Scholar 

  93. L. H. Dubois and D. L. Allara, unpublished observations.

    Google Scholar 

  94. T. M. Duncan, J. T. Yates, Jr., and R. W. Vaughan, 13C NMR of CO chemisorbed onto dispersed rhodium, J. Chem. Phys. 71, 3129–3130 (1979).

    Article  CAS  Google Scholar 

  95. T. M. Duncan, J. T. Yates, Jr., and R. W. Vaughan, A 13C NMR study of the adsorbed states of CO on Rh dispersed on Al203, J. Chem. Phys. 73, 975–985 (1980).

    Google Scholar 

  96. R. A. Toth, R. H. Hunt, and E. K. Plyler, Line intensities in the 3–0 band of CO and dipole moment matrix elements for the CO molecule, J. Mol. Spectrosc. 32, 85–96 (1969).

    Article  CAS  Google Scholar 

  97. T. M. Duncan, The nature of molecules adsorbed on catalytic surfaces: Pulsed nuclear magnetic resonance and infrared absorbance studies, Ph.D. thesis, California Institute of Technology, 1980.

    Google Scholar 

  98. E. R. Corey, L. F. Dahl, and W. Beck, Rh6(CO)16 and its identity with previously reported Rh4(CO)11, J. Am. Chem. Soc. 85, 1202–1203 (1963).

    Article  CAS  Google Scholar 

  99. S. Mills and E. F. Paulus, Trimeric Pi-cyclopentadienyl-carbonylrhodium, J. Chem. Soc. Chem. Commun. 815–816 (1966).

    Google Scholar 

  100. L. F. Dahl, C. Martell, and D. L. Wampler, Structure and metal—metal bonding in Rh2(CO)4C12, J. Am. Chem. Soc. 83, 1762–1763 (1961).

    Article  CAS  Google Scholar 

  101. M. A. Van Hove, L. H. Dubois, R. J. Koestner, and G. A. Samorjai, The structure of CO, CO2 and small hydrocarbons (acetylene, ethylene, propylene, methylacetylene) adsorbed on Rh(Ill) and Pt(111) studied by LEED and HREELS, Supplement Le Vide, Les Couches Minces 201, 287–290 (1980).

    Google Scholar 

  102. R. M. Kroeker, P. K. Hansma, and W. C. Kaska, Low energy vibrational modes of carbon monoxide on iron, J. Chem. Phys. 72, 4845–4852 (1980).

    Article  CAS  Google Scholar 

  103. W. Braun, M. Neumann, M. Iwan, and E. E. Koch, Energy level shifts of CO chemisorbed and condensed on Rh(1 I1), Solid State Commun. 27, 155–158 (1978).

    Article  CAS  Google Scholar 

  104. H. Conrad, G. Ertl, H. Knözinger, J. Köppers, and E. E. Latta, Polynuclear metal carbonyl compounds and chemisorption of CO on transition metal surfaces, Chem. Phys. Lett. 42, 115–118 (1976).

    Article  CAS  Google Scholar 

  105. Y. Takasu and A. M. Bradshaw, in Chemical Physics of Solids and Their Surfaces (M. W. Roberts and J. M. Thomas, eds.), Vol. 7, pp. 59–88, The Chemical Society, London (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Dubois, L.H. (1982). Comparisons of Tunneling Spectroscopy with Other Surface Analytical Techniques. In: Hansma, P.K. (eds) Tunneling Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1152-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1152-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1154-6

  • Online ISBN: 978-1-4684-1152-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics