Skip to main content

Light Emission from Tunnel Junctions

  • Chapter
Tunneling Spectroscopy

Abstract

A quick glance at the list of chapter titles in the present volume shows that electron tunneling spectroscopy has evolved from an esoteric curiosity in a few solid-state physics laboratories into a tool of considerable practical importance. For example, one may study the vibrational spectra of molecules bound to supported metal catalysts with this method, for geometries that closely mimic those of interest to catalytic chemists. While surface vibrational spectroscopy is a field in a stage of rapid development at the time of this writing, with several new techniques under exploration, tunneling spectroscopy is unique in its ability to explore such geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. John Lambe and S. J. McCarthy, Light emission from inelastic electron tunneling, Phys. Rev. Lett. 37, 923–925 (1976)

    Article  CAS  Google Scholar 

  2. S. J. McCarthy and John Lambe, Enhancement of light emission from metal—insulator—metal tunnel junctions, Appl. Phys. Lett. 30, 427–429 (1977).

    Article  CAS  Google Scholar 

  3. J. R. Kirtley and James T. Hall, Theory of intensities of inelastic electron tunneling spectroscopy orientation of adsorbed molecules, Phys. Rev. B 22, 848–856 (1980).

    Article  CAS  Google Scholar 

  4. C. J. Powell, Characteristic energy losses of 8-keV electrons in liquid Al, Bi, In, Ga, Hg, and Au, Phys. Rev. 175, 972–982 (1968).

    Article  CAS  Google Scholar 

  5. D. L. Mills and E. Burstein, Polaritons: The electromagnetic modes of media, Rep. Prog. Phys. 37, 817–926 (1974).

    Article  CAS  Google Scholar 

  6. V. M. Agranovich and D. L. Mills, eds., Electromagnetic Waves on Surfaces and Interfaces: Surface Polaritons and Their Interactions, North Holland Publishing Company, Amsterdam (1982).

    Google Scholar 

  7. H. Ibach and D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations, Academic Press, San Francisco (1982).

    Google Scholar 

  8. K. Parvin and William Parker, Optical spectra and angular dependence of the visible light emitted by metal-insulator-metal tunnel junctions, Solid State Commun. 37, 629–633 (1981).

    Article  CAS  Google Scholar 

  9. N. Kroo, Zs. Szentirmay, and J. Felszerfalvi, Optical determination of mean free path of hot electrons in metals, Phys. Status Solidi (b) 102, 227–234 (1980).

    Article  CAS  Google Scholar 

  10. J. R. Kirtley, T. N. Theis, and J. C. Tsang, Diffraction-grating-enhanced light emission from tunnel junctions, Appl. Phys. Lett. 37, 435 (1980)

    Article  CAS  Google Scholar 

  11. J. R. Kirtley, T. N. Theis, and J. C. Tsang, Light emission from tunnel junctions on gratings, Phys. Rev. B 24, 5650 (1981).

    Article  CAS  Google Scholar 

  12. D. W. Berreman, in Localized Excitations in Solids, p. 420 ( R. F. Wallis, ed.) Plenum Press. New York, 1968.

    Google Scholar 

  13. R. Ruppin (to be published).

    Google Scholar 

  14. A. M. Portis, Electromagnetic Fields: Sources and Media, John Wiley & Sons, New York, 1978.

    Google Scholar 

  15. G. Joos. Theoretical Physics, Hafner, New York, 1934.

    Google Scholar 

  16. P. Halevi, Electromagnetic wave propagation at the interface between two conductors, Phys. Rev. B 12, 4032–4035 (1977).

    Article  Google Scholar 

  17. J. C. Swihart, Field solution for a thin-film superconducting strip transmission line, J. Appl. Phys. 32, 461–469 (1961).

    Article  Google Scholar 

  18. Bernardo Laks and D. L. Mills, Photon emission from slightly roughened tunnel junctions. Phys. Rev. B 20, 4962–4980 (1979).

    Article  CAS  Google Scholar 

  19. Bernardo Laks and D. L. Mills, Roughness and the mean free path of surface polaritons in tunnel-junction structures, Phys. Rev. B 21. 5175–5184 (1980).

    Article  CAS  Google Scholar 

  20. Bernardo Laks and D. L. Mills, Light emission from tunnel junctions: The role of the fast surface polariton, Phys. Rev. B 22, 5723–5729 (1980).

    Article  CAS  Google Scholar 

  21. Daniel Hone, B. Muhlschlegel, and D. J. Scalapino, Theory of light emission from small-particle tunnel junctions, Appl. Phys. Lett. 33, 203–204 (1978)

    Article  Google Scholar 

  22. R. W. Rendell, D. J. Scalapino, and B. Muhlschlegel. Role of local plasmon modes in light emission from small-particle tunnel junctions, Phys. Rev. Lett. 41, 1746–1750 (1978).

    Article  CAS  Google Scholar 

  23. D. L. Mills and A. A. Maradudin. Surface roughness and the optical properties of a semi-infinite material: The effect of a dielectric overlaver, Phys. Rev. B 12, 2943–2958 (1975).

    Article  CAS  Google Scholar 

  24. H. Raether, Nuovo Cimento (to be published).

    Google Scholar 

  25. D. L. Mills, Interaction of surface polaritons with periodic surface structure: Rayleigh waves and gratings, Phys. Rev. B 15, 3097–3118 (1977).

    Article  Google Scholar 

  26. Bernardo Laks, D. L. Mills, and A. A. Maradudin, Surface polaritons on large amplitude gratings. Phys. Rev. B 23, 4965–4976 (1981).

    Article  Google Scholar 

  27. H. J. Levinson, E. W. Plummer, and P. J. Feibelman. Effects on photoemission of the spatially varying photon field at a metal surface, Phys. Rev. Lett. 43. 952–955 (1979).

    Article  CAS  Google Scholar 

  28. P. K. Hansma and H. P. Broida, Light emission from gold particles excited by electron tunneling, Appl. Phys. Lett. 32. 545–546 (1978)

    Article  CAS  Google Scholar 

  29. Arnold Adams, J. C. Wyss, and P. K. Hansma, Possible observation of local plasmon modes excited by electrons tunneling through junctions, Phys. Rev. Lett. 42. 912–915 (1979).

    Article  CAS  Google Scholar 

  30. D. L. MIlls, Attenuation of surface polaritons by surface roughness. Phys. Rev. B 12. 4036–4046 (1975)

    Article  Google Scholar 

  31. D. L. MIlls, Erratum: Attenuation of surface polaritons by surface roughness. Phys. Rev. B 14, 5539 (1976).

    Article  Google Scholar 

  32. P. K. Hansma (private communication).

    Google Scholar 

  33. E. Burstein (private communication).

    Google Scholar 

  34. R. W. Rendell and D. J. Scalapino. Surface plasmons confined by microstructures on tunnel junctions. Phys. Rev. B 24. 3276–3294 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Mills, D.L., Weber, M., Laks, B. (1982). Light Emission from Tunnel Junctions. In: Hansma, P.K. (eds) Tunneling Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1152-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1152-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1154-6

  • Online ISBN: 978-1-4684-1152-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics