Skip to main content

The Structure and Catalytic Reactivity of Supported Homogeneous Cluster Compounds

  • Chapter
Tunneling Spectroscopy

Abstract

Although tunneling spectroscopy has been applied heretofore to only a limited extent in the investigation of homogeneous cluster compounds supported on oxide surfaces, it is quite possible that it will prove to be one of the more valuable techniques that can be used to elucidate the structure and catalytic reactivity of this important class of catalysts. The principles of tunneling spectroscopy have been described in Chapter 1 of this book as well as in the previous review articles.(1–5) Examples of the use of tunneling spectroscopy to investigate the catalytic properties of metal crystallites supported on oxide surfaces have been described in previous review articles,(1–5) and, in particular, in Chapter 13 of this text. This application is closely related to the study of supported homogeneous cluster compounds. In the former case, one is concerned with aggregates of reduced metallic atoms attached to an oxide “support,” while in the latter case, the topic of this chapter, one is concerned with the attachment and catalytic reactivity of cluster compounds (which may or may not have lost one or more of their ligands) “supported” on an oxide surface.

Work supported by the National Science Foundation under grant No. CPE-8024597.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. K. Hansma, Inelastic electron tunneling, Phys. Rep. 30C, 145–206 (1977).

    Google Scholar 

  2. W. H. Weinberg, Inelastic electron tunneling spectroscopy: A probe of the vibrational structure of surface species, Ann. Rev. Phys. Chem. 29, 115–139 (1978).

    Article  CAS  Google Scholar 

  3. P. K. Hansma and J. Kirtley, Recent advances in inelastic electron tunneling spectroscopy, Acc. Chem. Res. 11, 440–445 (1978).

    Article  CAS  Google Scholar 

  4. Inelastic Electron Tunneling Spectroscopy (T. Wolfram, ed.), Springer-Verlag, New York (1978).

    Book  Google Scholar 

  5. R. M. Kroeker and P. K. Hansma,Tunneling spectroscopy for the study of adsorption and reaction on model catalysts, Catal. Rev. 23, 553–603 (1981).

    Article  CAS  Google Scholar 

  6. W. M. Bowser and W. H. Weinberg, The nature of the oxide barrier in inelastic electron tunneling spectroscopy, Surf. Sci. 64, 377–392 (1977).

    CAS  Google Scholar 

  7. H. E. Evans, W. M. Bowser, and W. H. Weinberg, An XPS investigation of alumina thin films utilized in inelastic electron tunneling spectroscopy, Appl. Surf. Sci. 5, 258–274 (1980).

    Article  CAS  Google Scholar 

  8. P. K. Hansma, D. A. Hickson, and J. A. Schwarz, Chemisorption and catalysis on oxidized aluminum metal, J. Catal. 48, 237–242 (1977).

    Article  CAS  Google Scholar 

  9. H. E. Evans and W. H. Weinberg, Inelastic electron tunneling spectroscopy of zirconium tetraborohydride supported on aluminum oxide, J. Am. Chem. Soc. 102, 872–873 (1980).

    Article  CAS  Google Scholar 

  10. H. E. Evans and W. H. Weinberg, Synthesis and catalytic reactions of Zr(BH4)4 on Al203 characterized by inelastic electron tunneling spectroscopy, J. Vac. Sci. Technol. 17, 47–48 (1980).

    Article  Google Scholar 

  11. H. E. Evans and W. H. Weinberg, A vibrational study of zirconium tetraborohydride supported on aluminum oxide. I. Interactions with deuterium, deuterium oxide and water vapor, J. Am. Chem. Soc. 102, 2548–2553 (1980).

    CAS  Google Scholar 

  12. H. E. Evans and W. H. Weinberg, A vibrational study of zirconium tetraborohydride supported on aluminum oxide. 2. Interactions with ethylene, propylene and acetylene, J. Am. Chem. Soc. 102, 2554–2558 (1980).

    Article  CAS  Google Scholar 

  13. L. Forester and W. H. Weinberg, A vibrational study of Zr(BH4)4 supported on alumina: Interactions with cyclohexene, 1,3-cyclohexadiene and benzene, J. Vac. Sci. Technol. 18, 600–601 (1981).

    Article  Google Scholar 

  14. W. H. Weinberg, W. M. Bowser, and H. E. Evans, Reduced metallic clusters and homogeneous cluster compounds “supported” on aluminum oxide as studied by inelastic electron tunneling spectroscopy, Surf. Sci. 106, 489–497 (1981).

    CAS  Google Scholar 

  15. W. M. Bowser and W. H. Weinberg, An inelastic electron tunneling spectroscopic study of Ru3(CO)12 adsorbed on an aluminum oxide surface, J. Am. Chem. Soc. 102, 4720–4724 (1980).

    Article  CAS  Google Scholar 

  16. W. M. Bowser and W. H. Weinberg, An inelastic electron tunneling spectroscopic study of the interaction of [RhCl(CO)2]2 with an aluminum oxide surface, J. Am. Chem. Soc. 103, 1453–1458 (1981).

    Article  CAS  Google Scholar 

  17. S. D. Williams, M. K. Dickson, D. M. Roundhill, and K. W. Hipps, The vibrational spectrum of the surface species obtained by solution doping of alumina with Fe3(CO)12 as studied by inelastic electron tunneling spectroscopy, Washington State University (unpublished report).

    Google Scholar 

  18. V. A. Zakharov and Yu. I. Yermakov, Supported organometallic catalysts of olefin polymerization, Catal. Rev. 19, 67–103 (1979).

    CAS  Google Scholar 

  19. W. M. Bowser and W. H. Weinberg, Sample heating and simultaneous temperature measurement in inelastic electron tunneling spectroscopy, Rev. Sci. Instrum. 47. 583–586 (1976).

    Article  CAS  Google Scholar 

  20. U. Mazur and K. W. Hipps, An inelastic electron tunneling spectroscopy study of the adsorption of NCS-, OCN- and CN- from water solution on Al2O3, J. Phys. Chem. 83. 2773–2777 (1979).

    Article  CAS  Google Scholar 

  21. T. J. Marks, W. J. Kennelly, J. R. Kolb, and L. A. Shimp, Structure and dynamics in metal tetrahydroborates. II. Vibrational spectra and structures of some transition metal actinide tetrahydroborates. Inorg. Chem. 11. 2540–2546 (1972).

    Article  CAS  Google Scholar 

  22. B. D. James and M. G. H. Wallbridge, Metal tetrahydroborates. Prog. Inorg. Chem. 11, 99–231 (1970).

    Article  CAS  Google Scholar 

  23. T. J. Marks and J. R. Kolb, Covalent transition metal, lanthanide. and actinide tetrahydroborate complexes. Chem. Rev. 77, 263–293 (1977).

    Article  CAS  Google Scholar 

  24. T. Matsuda and H. Kawashima, An infrared study of hydroboration of lower olefins with dihorane on y-Al2O3. J. Catal. 49, 141–149 (1977).

    Article  CAS  Google Scholar 

  25. B. E. Smith, B. D. James, and J. A. Dilts, Bis(tetrahydroborate)bis (cyclopentadienyl)zirconium(IV): A synthetic, thermoanalytical and vibrational spectroscopic study, J. Inorg. Nucl. Chem. 38, 1973–1978 (1976).

    Article  CAS  Google Scholar 

  26. H. E. Flotow and D. W. Osborne, Heat capacities and thermodynamic functions of ZrH2 and ZrD2 from 5 to 350°K and the hydrogen vibrational frequency in ZrH2, J. Chem. Phys. 34, 1418–1425 (1961).

    Article  CAS  Google Scholar 

  27. B. E. Smith, H. F. Shurwell, and B. D. James, Molecular vibrations of zirconium(IV) tetrahydroborate, a compound containing triple hydrogen bridges. J. Chem. Soc. Dalton Trans. 1978, 710–722.

    Google Scholar 

  28. D. G. H. Ballard, Transition metal alkyl compounds as polymerization catalysts, J. Poh •m. Sci. 13, 2191–2212 (1975).

    CAS  Google Scholar 

  29. N. L. Albert, W. E. Keiser, and H. A. Szymanski, Theory and Practice of Infrared Spectroscopy, Plenum Press, New York (1970).

    Google Scholar 

  30. R. T. Conley, Infrared Spectroscopy, Allyn and Bacon, Boston (1972).

    Google Scholar 

  31. S. Krimm, C. Y. Liang, and G. B. B. M. Sutherland, Infrared spectra of high polymers. II. Polyethylene, J. Chem. Phi’s. 25, 549–562 (1956).

    Article  CAS  Google Scholar 

  32. J. R. Nielsen and A. H. Woollen. Vibrational spectra of olyethylenes and related substances, J. Chem. Phys. 26, 1391–1400 (1957).

    CAS  Google Scholar 

  33. D. O. Hummel, Infrared Spectra of Polymers. Polymer Rev. 14, 8–97 (1966).

    Google Scholar 

  34. K. Abe and K. Yanagisawa, Infrared spectra of melted polypropylene films, J. Polym. Sci. 36, 536–539 (1959).

    Article  CAS  Google Scholar 

  35. J. P. Luongo, Infrared study of polypropylene, J. Appl. Polym. Sci. 3, 302–309 (1960).

    Article  CAS  Google Scholar 

  36. C. R. Ficker, Jr., M. Ozaki, A. J. Heeger, and A. G. MacDiarmid, Donor and acceptor states in lightly doped polyacetylene, (CH),, Phys. Rev. B 19, 4140–4148 (1979).

    Article  Google Scholar 

  37. L. Forester, unpublished results.

    Google Scholar 

  38. P. C. Wailes, H. Weingold, and A. P. Bell, Hydrido complexes of zirconium(IV): Reactions with olefins, J. Organomet. Chem. 43, C32 - C34 (1972).

    Article  CAS  Google Scholar 

  39. M. R. Churchill, F. J. Hollander, and J. P. Hutchinson, An accurate redetermination of the structure of triruthenium dodecacarbonyl, Ru3(CO)12, Inorg. Chem. 16, 2655–2659 (1977).

    CAS  Google Scholar 

  40. W. M. Bowser, PhD thesis, California Institute of Technology (1980).

    Google Scholar 

  41. J. R. Anderson, P. S. Elmes, R. F. Howe, and D. E. Mainwaring, Preparation of some supported metallic catalysts from metallic cluster carbonyls, J. Catal. 50, 508–518 (1977).

    Article  CAS  Google Scholar 

  42. J. Robertson and G. Webb, Catalysis by supported group VIII metal compounds. I. The interaction of n-butane with hydrogen over silica-supported ruthenium carbonyl catalysts, Proc. R. Soc. London Ser. A 341, 383–398 (1974).

    Article  Google Scholar 

  43. C. O. Quicksall and T. G. Spiro, Raman frequencies of metal cluster compounds: 0s3(CO)12 and Ru3(CO)12, Inorg. Chem. 7. 2365–2369 (1968).

    CAS  Google Scholar 

  44. J. R. Kirtley and P. K. Hansma, Vibrational mode shifts in inelastic electron tunneling spectroscopy: Effects due to superconductivity and surface interactions, Phis. Rey. B 13, 2910–2917 (1976).

    Article  CAS  Google Scholar 

  45. R. M. Kroeker, W. C. Kaska, and P. K. Hansma, How carbon monoxide bonds to alumina-supported rhodium particles: tunneling measurements with isotopes, J. Catal. 57, 72–79 (1979).

    Article  CAS  Google Scholar 

  46. J. Klein, A. Léger, S. DeCheveigné, C. Guinet, M. Belin, and D. Defourneau, An inelastic electron tunneling spectroscopy study of the adsorption of CO on Rh, Surf. Sci. 82 L288 - L292 (1979).

    CAS  Google Scholar 

  47. H. E. Evans, W. M. Bowser, and W. H. Weinberg, The adsorption of ethanol on silver clusters supported on alumina, Surf. Sci. 85, L497 - L502 (1979).

    CAS  Google Scholar 

  48. C. W. Garland and J. R. Wilt, Infrared spectra and dipole moments of Rh2(CO)4C12 and Rh2(CO)4Br2, J. Chem. Phys. 36, 1094–1095 (1962).

    Article  CAS  Google Scholar 

  49. L. F. Dahl, C. Martell, and D. L. Wampler, Structure of and metal-metal bonding in Rh(CO)2C1, J. Am. Chem. Soc. 83, 1761–1762 (1961).

    Article  Google Scholar 

  50. A. C. Yang and C. W. Garland, Infrared studies of carbon monoxide chemisorbed on rhodium, J. Phys. Chem. 61, 1504–1512 (1957).

    Article  Google Scholar 

  51. H. Arai and H. Tominga, An infrared study of nitric oxide adsorbed on a rhodium-alumina catalyst. J. Catal. 43, 131–142 (1976).

    Article  CAS  Google Scholar 

  52. J. T. Yates, Jr., T. M. Duncan, S. D. Worley, and R. W. Vaughan, Infrared spectra of chemisorbed CO on Rh, J. Chem. Phys. 70, 1219–1224 (1979).

    Article  CAS  Google Scholar 

  53. D. J. C. Yates, L. L. Murrell, and E. B. Prestridge, Ultradispersed rhodium rafts: Their existence and topology, J. Catal. 57, 41–63 (1979).

    Article  CAS  Google Scholar 

  54. G. C. Smith, T. P. Chojnacki, S. R. Dasgupta, K. Iwatate, and K. L. Watters. Surface-supported metal cluster carbonyls. I. Decarbonylation and aggregation reactions of rhodium clusters on alumina, Inorgan. Chem. 14, 1419–1421 (1975).

    CAS  Google Scholar 

  55. P. K. Hansma, W. C. Kaska, and R. M. Laine, Inelastic electron tunneling spectroscopy of carbon monoxide chemisorbed on alumina-supported transition metals, J. Am. Cheat. Soc. 98, 6064–6065 (1976).

    Article  CAS  Google Scholar 

  56. G. Carturan and G. Strukul. Atomically dispersed palladium as a borderline case between heterogeneous and homogeneous hydrogenation of olefins. J. Catal. 57, 516–521 (1979).

    Article  CAS  Google Scholar 

  57. J. F. Hamilton and R. C. Baetzold, Catalysis by small metal clusters, Science. 205, 1213–1220 (1979).

    Article  CAS  Google Scholar 

  58. J. Lewis, A. R. Manning, J. R. Miller, and J. M. Wilson, Chemistry of polynuclear compounds. VII. The mass spectra of some polynuclear metal carbonyl complexes. J. Chem. Soc. A 1966, 1663–1670.

    Google Scholar 

  59. R. B. King, Some novel features in the mass spectra of polynuclear metal carbonyl derivatives, J. Am. Chem. Soc. 88, 2075–2077 (1966).

    Article  CAS  Google Scholar 

  60. J. Lewis and B. F. G. Johnson, Mass spectra of some organometallic molecules. Acc. Chem. Res. 1, 245–256 (1968).

    Article  CAS  Google Scholar 

  61. M. I. Bruce and F. G. A. Stone, Dodecacarbonyltriruthenium, Angew. Chem. Int. Ed. Engl. 7, 427–432 (1968).

    Google Scholar 

  62. C. H. Wei and L. F. Dahl, Triiron dodecacarbonyl: An analysis of its stereochemistry, J. Am. Chem. Soc. 91, 1351–1361 (1969).

    Article  CAS  Google Scholar 

  63. A. Brenner and D. A. Hucul, Catalysts of supported iron derived from molecular complexes containing one, two, and three iron atoms, Inorg. Chem. 18, 2836–2840 (1979).

    CAS  Google Scholar 

  64. F. Hugues, A. K. Smith, Y. Ben Taarit, J. M. Basset, D. Commereuc, and Y. Chauvin, Surface-supported metal carbonyl clusters: Formation of [HFe3(CO)11]- by interaction of Fe3(CO)12 and Fe(CO)5 with alumina and magnesia, J. Chem. Soc. Chem. Commun. 1980, 68–70.

    Google Scholar 

  65. D. Commereuc, Y. Chauvin, F. Hugues, J. M. Basset, and D. Olivier, Catalytic synthesis of low molecular weight olefins from CO and H2 with Fe(CO)5, Fe3(CO)12 and [HFe3(CO)11]supported on inorganic oxides, J. Chem. Soc. Chem. Commun. 1980, 154–155.

    Google Scholar 

  66. J. S. Kristoff and D. F. Shriver, Adduct formation and carbonyl rearrangement of polynuclear carbonyls in the presence of group VIII halides, Inorg. Chem. 13, 499–506 (1974).

    Article  Google Scholar 

  67. D. Ballivct-Tkatchcnko, G. Conduricr, H. Mozzanega, and I. Tkatchenko, in Fundamental Research in Homogeneous Catalysis ( M. Tsutsui, ed.), p. 257, Plenum Press, New York (1979).

    Book  Google Scholar 

  68. M. Bigorgne, Étude spectroscopique Raman et infrarouge de Fe(CO)5, Fe(CO)4 L, et trans-Fe(CO)3 L2 (l, = PMe3, AsMe3, SbMe3). I. Attribution des bandes de Fe(CO)5, J. Organomet. Chem. 24, 211–229 (1970).

    Article  CAS  Google Scholar 

  69. I. S. Butler, S. Kishner, and K. R. Plowman, Vibrational spectra of solid tri-µ-carbonyl(hexacarbonyl)di-iron(0), Fe2(CO)9, J. Mol. Struct. 43, 9–15 (1978).

    Article  CAS  Google Scholar 

  70. N. Davies, M. G. H. Wallbridge, B. E. Smith, and B. D. James, Vibrational spectra of zirconium tetrahydroborate and related molecules, J. Chem. Soc. Dalton Trans. 1973, 162–165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Weinberg, W.H. (1982). The Structure and Catalytic Reactivity of Supported Homogeneous Cluster Compounds. In: Hansma, P.K. (eds) Tunneling Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1152-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1152-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1154-6

  • Online ISBN: 978-1-4684-1152-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics