Skip to main content

Introduction

  • Chapter
Tunneling Spectroscopy

Abstract

Tunneling spectroscopy is a sensitive technique for measuring the vibrational spectra of molecules. It was discovered by Jaklevic and Lambe(1, 2) in 1966.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. C. Jaklevic and J. Lambe, Molecular vibration spectra by electron tunneling, Phys. Rev. Lett. 17, 1139–1140 (1966).

    Article  CAS  Google Scholar 

  2. J. Lambe and R. C. Jaklevic, Molecular vibration spectra by inelastic electron tunneling, Phys. Rev. 165, 821–832.

    Google Scholar 

  3. See, for example, C. J. Pouchert, The Aldrich Library of Infrared Spectra, Aldrich Chemical Co., Milwaukee (1970).

    Google Scholar 

  4. I. Shimanouchi, Tables of Molecular Vibrational Frequencies, Consolidated Volume I. National Standard Reference Data Series, National Bureau of Standards, U.S., No. 39 (1972).

    Google Scholar 

  5. M. Avram and GH. D. Mateescu, Infrared Spectroscopy, Wiley-Interscience, New York (1972).

    Google Scholar 

  6. L. J. Bellamy, The Infrared Spectra of Complex Molecules, John Wiley and Sons, New York (1975).

    Google Scholar 

  7. E. Maslowsky, Jr., Vibrational Spectra of Organometallic Compounds, Wiley-Interscience, New York (1977).

    Google Scholar 

  8. S. Colley and P. Hansma, Bridge for differential tunneling spectroscopy, Reu. Sci. Instrum. 48, 1192–1195 (1977).

    Article  CAS  Google Scholar 

  9. J. Adler and R. Magno, unpublished.

    Google Scholar 

  10. J. D. Langan and P. K. Hansma, Can the concentration of surface species be measured with inelastic electron tunneling?, Surf. Sci. 52, 211–216 (1975).

    Article  CAS  Google Scholar 

  11. A. A. Cederberg, Inelastic electron tunneling spectroscopy intensity as a function of surface coverage, Surf Sci. 103, 148–176 (1981).

    Article  CAS  Google Scholar 

  12. R. M. Kroeker and P. K. Hansma, A measurement of the sensitivity of inelastic electron tunneling spectroscopy, Surf. Sci. 67, 362–366 (1977).

    Article  CAS  Google Scholar 

  13. D. G. Walmsley, R. B. Floyd, and S. F. J. Read, Inelastic electron tunneling spectra lineshapes below 100 mK, J. Phys. C 11, L107 - L110 (1978).

    Article  CAS  Google Scholar 

  14. N. I. Bogatina, Selection rules in tunnel spectroscopy for highly symmetrical molecules, Opt. Spectrosc. 38, 43–44 (1975).

    Google Scholar 

  15. N. I. Bogatina, I. K. Yanson, B. I. Verkin, and A. G. Batrak, Tunnel spectra of organic solvents, Soy. Phys.-JETP 38, 1162–1165 (1974).

    Google Scholar 

  16. O. I. Shklyarevskii, A. A. Lysykh, and I. K. Yanson, Tunnel spectra of carboxylic acids: The transition from physical absorption to chemisorption, Sov. J. Low Temp. Phys. 2. 328–333 (1976).

    Google Scholar 

  17. J. Kirtley, D. J. Scalapino, and P. K. Hansma, Theory of vibrational mode intensities in inelastic electron tunneling spectroscopy, Phys. Rec. B 14, 3177–3184 (1976).

    Article  CAS  Google Scholar 

  18. N. M. D. Brown, R. B. Floyd, and D. G. Walmsley, Inelastic electron tunneling spectroscopy (IETS) of carboxylic acids and related systems chemisorbed on plasma-grown aluminum oxide-Part 1, J. Chem. Soc., Faraday Trans. 2 75, 17–31 (1979)

    Article  CAS  Google Scholar 

  19. N. M. D. Brown, W. J. Nelson, and D. G. Walmsley, Inelastic electron tunneling spectroscopy (IETS) of carboxylic acids and related systems chemisorbed on plasma-grown aluminum oxide-Part 2, J. Chem. Soc., Faraday Trans. 2 75, 32–37 (1979).

    Article  CAS  Google Scholar 

  20. J. T. Hall and P. K. Hansma, Chemisorption of monocarboxylic acids on alumina: A tunneling spectroscopy study, Surf. Sci. 76, 61–76 (1978).

    Article  Google Scholar 

  21. J. T. Hall and P. K. Hansma, Adsorption and orientation of sulfonic acids on aluminum oxide: A tunneling spectroscopy study, Surf. Sci. 71, 1–14 (1978).

    Article  CAS  Google Scholar 

  22. P. K. Hansma, D. A. Hickson, and J. A. Schwartz, Chemisorption and catalysis on oxidized aluminum metal, J. Catal. 48, 237–242 (1977).

    Article  CAS  Google Scholar 

  23. A. F. Diaz, U. Hetler, and E. Kay, Inelastic electron tunneling spectroscopy of a chemically modified surface, J. Am. Chem. Soc. 99, 6780–6781 (1977).

    Article  CAS  Google Scholar 

  24. N. K. Eib, A. N. Gent, and P. N. Henriksen, Formation of SiH bonds when SiO is deposited on alumina, J. Chem. Phys. 70, 4288–4290 (1979).

    Article  CAS  Google Scholar 

  25. R. Kroeker, previously unpublished observation.

    Google Scholar 

  26. J. R. Kirtley and P. K. Hansma, Effect of the second metal electrode on vibrational spectra in inelastic-electron-tunneling spectroscopy, Phys. Rev. B 12, 531–536 (1975).

    Article  CAS  Google Scholar 

  27. J. R. Kirtley and P. K. Hansma, Vibrational-mode shifts in inelastic electron tunneling spectroscopy: Effects due to superconductivity and surface interactions, Phys. Rev B 13, 2910–2917 (1976).

    Article  CAS  Google Scholar 

  28. A. Bayman and P. K. Hansma, Shifts and dips in inelastic electron tunneling spectra due to the tunnel junction environment, Phys. Rev. Abst. 12, (1981).

    Google Scholar 

  29. K. W. Hipps and U. Mazur, An inelastic electron tunneling spectroscopy study of sonie iron cyanide complexes, J. Phys. Chem. 84, 3162–3172 (1980).

    Article  CAS  Google Scholar 

  30. R. J. Jennings and J. R. Merrill, The temperature dependence of impurity-assisted tunneling, J. Phys. Chem. Solids 33, 1261 (1972).

    Article  CAS  Google Scholar 

  31. J. Giaever, Electron tunneling and superconductivity, Rev. Mod. Phys. 46 245–250 (1974) (his Nobel Prize acceptance speech).

    Google Scholar 

  32. W. L. McMilland and J. Rowell, in Superconductivity (R. D. Parks, ed.), p. 561, Marcel Dekker, New York (1969).

    Google Scholar 

  33. R. V. Coleman, R. C. Morris, and J. E. Christopher, Methods of Experimental Physics VII. Solid State Physics (R. V. Coleman, ed. ), Academic Press (1974).

    Google Scholar 

  34. J. L. Miles and P. H. Smith, The formation of metal oxide films using gaseous and solid electrolytes, J. Electrochem. Soc. 110, 1240–1245 (1963).

    Article  Google Scholar 

  35. R. Magno and J. G. Adler, Inelastic electron-tunneling study of barriers grown on aluminum, Phys. Rev. B 13, 2262–2269 (1976).

    Article  CAS  Google Scholar 

  36. M. G. Simonsen and R. V. Coleman, Inelastic-tunneling spectra of organic compounds, Phys. Rev. B 8, 5875–5887 (1973).

    Article  CAS  Google Scholar 

  37. P. K. Hansma and R. V. Coleman, Spectroscopy of biological compounds with inelastic electron tunneling, Science, 184, 1369–1371 (1974).

    Article  CAS  Google Scholar 

  38. M. G. Simonsen, R. V. Coleman, and P. K. Hansma, High-resolution inelastic tunneling spectroscopy of macromolecules and adsorbed species with liquid-phase doping, J. Chem. Phys. 61, 3789–3799 (1974).

    Article  CAS  Google Scholar 

  39. Y. Skarlatos, R. C. Barker, G. L. Haller, and A. Yelon, Detection of dilute organic acids in water by inelastic tunneling spectroscopy, Surf. Sci. 43, 353–368 (1974).

    Article  CAS  Google Scholar 

  40. A. Bayman and P. K. Hansma, Inelastic electron tunneling spectroscopic study of lubrication, Nature 285, 97–99 (1980).

    Article  CAS  Google Scholar 

  41. R. C. Jaklevic and M. R. Gaerttner, Electron tunneling spectroscopy-external doping with organic molecules, Appl. Phys. Lett. 30, 646–648 (1977).

    Article  CAS  Google Scholar 

  42. R. C. Jaklevic and M. R. Gaerttner, Inelastic electron tunneling spectroscopy. Experiments on external doping of tunnel junctions by an infusion technique, Appl. Surf. Sci. 1, 479–502 (1978).

    Article  CAS  Google Scholar 

  43. B. D. Wallace, Low power at ohmmeter’s probes allows safe usage on most sensitive components, Electron. Des. 14, 110 (1974).

    CAS  Google Scholar 

  44. D. E. Thomas and J. M. Rowell, Low-level second-harmonic detection system, Rev. Sci. Instrum. 36, 1301–1306 (1965).

    Article  Google Scholar 

  45. J. G. Adler and J. E. Jackson, System for observing small nonlinearities in tunnel junctions. Rev. Sci. Instrum. 37, 1049–1054 (1966).

    Article  CAS  Google Scholar 

  46. A. F. Hebard and P. W. Shumate, A new approach to high resolution measurements of structure in superconducting tunneling currents, Rev. Sci. Instrum. 45, 529–533 (1974).

    Article  CAS  Google Scholar 

  47. S. Colley and P. K. Hansma, Bridge for differential tunneling spectroscopy, Rev. Sci. Instrum. 48, 1192–1195 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Hansma, P.K. (1982). Introduction. In: Hansma, P.K. (eds) Tunneling Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1152-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1152-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1154-6

  • Online ISBN: 978-1-4684-1152-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics