Skip to main content

Physiological and Chemical Control of Hippocampal Neurones

  • Chapter
Book cover Neurotransmitter Interaction and Compartmentation

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 48))

Abstract

The hippocampus is part of the limbic system. It represents the most simple of the cortical regions and is comprised of several, strip-like cortical elements, adjoining each other. The overall position of the hippocampus in the rodent brain is indicated in Fig. 1A. Here, the outline of the hippocampus is drawn superimposed on the lateral aspect of the brain. In rodents, it has a relatively large volume. On ascending the phylogenetic scale its relative size decreases. The absolute volume increases, however, and is highest in man and whales. Dorsally and anteriorally it borders the septal region whereas the amygdala nuclear complex is found anterior :and medial to its temporal pole. Along its caudal border lies the entorhinal area which is part of the hippocampal gyrus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alger, B.E. and Nicoll, R.A., 1979, GABA-mediated biphasic inhibitory response in hippocampus. Nature, 28.1: 315–317.

    Article  Google Scholar 

  • Allen, G.I., Eccles, J., Nicoll, R.A., Oshima, T. and Rubia, F.J., 1977, The ionic mechanisms concerned in generating the i.p.s.ps of hippocampal pyramidal cells. Proc. R. Soc. Lond. B., 198: 363–384.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, P., Blackstad, T.W. and Lømo, T., 1966, Location and identification of excitatory synapses on hippocampal pyramidal cells. Exp. Brain Res.,1: 236–248.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, P., Bliss, T.V.P. and Skrede, K.K., 1971, Lamellar organization of hippocampal excitatory pathways. Exp. Brain Res., 13: 222–238.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I.A. and Mosfeldt Laursen, A., 1980a, Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid. J. Physiol., 305: 279–296.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Eccles, J.C. and Løyning, Y., 1964, Pathway of postsynaptic inhibition in the hippocampus. J. Neurophysiol., 27: 608–619.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Silfvenius, H., Sundberg, S.H. and Sveen, O., 1980b, A comparison of distal and proximal dendritic synapses on CA1 pyramids in hippocampal slices in vitro. J. Physiol., 307: 273–299.

    PubMed  CAS  Google Scholar 

  • Andersen, P., Sundberg, S.H., Sveen, O. and Wigström, H., 1977, Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature, 266: 736–737.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, P., Sundberg, S.H., Swann, J.N. and Wigström, H., 1980c, Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea pigs. J. Physiol., 302: 463–482.

    PubMed  CAS  Google Scholar 

  • Biscoe, T.J. and Straughan, D.W., 1966, Micro-electro-phoretic studies of neurones in the cat hippocampus. J. Physiol., 183: 341–359.

    PubMed  CAS  Google Scholar 

  • Blackstad, T.W., Brink, K., Hem, J. and Jeune, B., 1970, Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods. J. comp. Neuro1., 138: 433–450.

    Article  CAS  Google Scholar 

  • Blackstad, T.W., Fuxe, K. and Hökfelt, T., 1967, Noradrenaline nerve terminals in the hippocampal region of the rat and the guinea pig. Zellforsch., 78: 463–473.

    Article  CAS  Google Scholar 

  • Bliss, T.V.P. and Lømo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol., 232: 331–356.

    PubMed  CAS  Google Scholar 

  • Browning, M., Dunwiddie, T., Bennett, W., Gispen, W. and Lynch, G., 1979, Synaptic phosphoproteins: specific changes after repetitive stimulation of the hippocampal slice. Science, 203: 60–62.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D.R., Felix, D. and McLennan, H., 1970, GABA and hippocampal inhibition. Brit. J. Pharmacol., 40: 881–883.

    Article  CAS  Google Scholar 

  • Deadwyler, S.A., West, M. and Lynch, G., 1979, Activity of dentate granule cells during learning: differentiation of perforant path input. Brain Res., 169: 29–43.

    Article  PubMed  CAS  Google Scholar 

  • Dichter, M. and Spencer, W.A., 1969, Penicillin-induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features. J. Neurophysiol., 32: 649–662.

    PubMed  CAS  Google Scholar 

  • Dingledine, R. and Langmoen, I.A., 1980, Conductance changes and inhibitory actions of hippocampal recurrent IPSPs. Brain Res., 185: 277–287.

    Article  PubMed  CAS  Google Scholar 

  • Dodd, J., Dingledine, R. and Kelly, J.S., 1981, The excitatory action of acetylcholine on hippocampal neurones of the guinea pig and rat maintained in vitro. Brain Res., 207: 109–127.

    Article  PubMed  CAS  Google Scholar 

  • Dudar, J.D., 1974, In vitro excitation of hippocampal pyramidal cell dendrites by glutamic acid. Neuropharmacol., 13: 1083–1089.

    Article  CAS  Google Scholar 

  • Duffy, C., Teyler, T.J. and Shashoua, V.E., 1981, Long-term potentiation in the hippocampal slice: evidence for stimulated secretion of newly synthesized proteins. Science, 212: 1148–1151.

    Article  PubMed  CAS  Google Scholar 

  • Finch, D.M. and Babb, T.L., 1981, Demonstration of caudally directed hippocampal efferents in the rat by intracellular injection of horseradish peroxidase. Brain Res.,214: 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Hamlyn, L.H., 1963, An electron microscope study of pyramidal neurones in the Amnion’s Horn of the rabbit. J. Anat. (Lond.), 97: 189–201.

    CAS  Google Scholar 

  • Herz, A. and Nacimiento, A., 1965, Über die Wirkung von Pharmaka auf Neurone des Hippocampus nach mikro-elektrophoretischer Verabfolgung. Naunyn-Schmiedebergs Arch. Exp. Pat. u. Pharmak.,251: 295–314.

    CAS  Google Scholar 

  • Hökfelt, T., Ljungdahl, Å., Fuxe, K. and Johansson, O., 1974, Dopamine nerve terminals in the rat limbic cortex: Aspects of the dopamine hypothesis of schizophrenia. Science, 184: 177–179.

    Article  PubMed  Google Scholar 

  • Hotson, J.R., Prince, D.A. and Schwartzkroin, P.A., 1979, Anomalous inward rectification in hippocampal neurons. J. Neurophysiol., 42: 889–895.

    PubMed  CAS  Google Scholar 

  • KrnjeviŰ, K., Pumain, R. and Renaud, L., 1971, The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol., 215: 247–268.

    Google Scholar 

  • Langmoen, I.A. and Andersen, P., 1981, Summation of excitatory presynaptic potentials in hippocampal pyramidal cells. Submitted to J. Neurophysiol.

    Google Scholar 

  • Langmoen, I.A., Segal, M. and Andersen, P., 1981, The mechanism of action of norepinephrine on hippocampal pyramidal cells in vitro. Brain Res.,208: 34 9–362.

    Google Scholar 

  • Lorente de Nó, R., 1934, Studies on the structure of the cerebral cortex. II. Continuation of the study of the Amnionic system. J. Psychol. Neurol, (Lpz),46: 113–177.

    Google Scholar 

  • Lynch, G.S., Dunwiddie, T. and Gribkoff, V., 1977, Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature,266: 737–739.

    Article  PubMed  CAS  Google Scholar 

  • McLean, P.D., 1955, The limbic system “visceral brain” and emotional behaviour. Arch. Neurol. Psychiat. (Chicago), 73: 130–134.

    Article  Google Scholar 

  • McNaughton, B.L., Barnes, C.A. and Andersen, P., 1981, Synaptic efficacy and EPSP summation in granule cell of rat fascia dentata studied in vitro. J. Neurophysiol., Submitted.

    Google Scholar 

  • Misgeld, U., Sarvey, J.M. and Klee, M.R., 1979, Heterosynaptic postactivation potentiation in hippocampal CA3 neurons: Long-term changes of the postsynaptic potentials. Exp. Brain Res.,37: 217–229.

    Article  PubMed  CAS  Google Scholar 

  • Nadler, J.V., Vaca, K.W., White, W.F., Lynch, G.S. and Cotman, C.W., 1976, Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents. Nature (Lond.), 260: 538–540.

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe, J. and Nadel, L., 1978, The hippocampus as a cognitive map. Clarendon Press, Oxford university Press, 570p.

    Google Scholar 

  • Olton, D.S. and Feustle, W.A., 1981, Hippocampal function required for nonspatial working memory. Exp. Brain Res., 41: 380–389.

    PubMed  CAS  Google Scholar 

  • Rall, W., 1962, Electrophysiology of a dendritic neuron model. Biophys. J., 2: 145–167.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W., 1967, Distinguishing theoretical synaptic potentials computed for different somadendritic distributions of synaptic input. J. Neurophysiol., 30: 1138–1168.

    PubMed  CAS  Google Scholar 

  • Ramony Cajal, S., 1893, Beiträge zur feineren Anatomie des grossen Hirns. I. Über die feinere Struktur des Ammonshornes. Z. wiss. Zool., 56: 615–663.

    Google Scholar 

  • Ribak, C.E., Vaughn, J.E. and Saito, K., 1978, Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res., 140: 315–332.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P.A. and Andersen, P., 1975, Glutamic acid sensitivity of dendrites in hippocampal slices in vitro, in:”Advances in Neurology”, G.W. Kreutzberg Raven Press, New York, 12: 45–51.

    Google Scholar 

  • Scoville, W.B. and Milner, B., 1957, Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiat., 20: 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M., 1980, The action of serotonin in the rat hippocampal slice preparation. J. Physiol., 303: 423–439.

    PubMed  CAS  Google Scholar 

  • Segal, M., 1981, The action of norepinephrine in the rat hippocampus: intracellular studies in the slice preparation. Brain Res., 206: 107–128.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M. and Bloom, F.E., 1974, The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies. Brain Res., 72: 79–97.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M. and Bloom, F.E., 1974, The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway. Brain Res., 72: 99–114.

    Article  PubMed  CAS  Google Scholar 

  • Skrede, K.K. and Westgaard, R.H., 1971, The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Res., 35: 589–593.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., 1979, Tentative localization of glutamergic and aspartergic nerve endings in brain. J. Physiol., Paris, 75: 677–684.

    Google Scholar 

  • Storm-Mathisen, J. and Fonnum, F., 1971, Quantitative histochemistry of glutamate decarboxylase in the rat hippocampal region. J. Neurochem., 18: 1105–1111.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J. and Guldberg, H.C., 1974, 5-Hydroxy-tryptamine and noradrenaline in the hippocampal region: Effect of transection of afferent pathways on endogenous levels, high affinity uptake and some transmitter-related enzymes. J. Neurochem., 22: 793–803.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J. and Iversen, L.L., 1979, Uptake of [3H]Glutamic acid in excitatory nerve endings: Light and electronmicroscopic observations in the hippocampal formation of the rat. Neurosci., 4: 1237–1253.

    Article  CAS  Google Scholar 

  • Vanderwolf, C.H., 1975, Neocortical and hippocampal activation in relation to behavior: effect of atropine, eserine, phenothiazines and amphetamine. J. comp. physiol. Psychol., 88: 300–323.

    Article  PubMed  CAS  Google Scholar 

  • Vinogradova, O.S. and Brazhnik, E.S., 1978, Neuronal aspects of the septo-hippocampal relations, in: “Functions of the septo-hippocampal system”, J. Gray, ed., Pp. 145–171, Ciba Found. Symp. 58, Elsevier, Amsterdam.

    Google Scholar 

  • Wigström, H., Swann, J.W. and Andersen, P., 1979, Calcium dependency of synaptic long-lasting potentiation in the hippocampal slice. Acta physiol. scand., 105: 126–128.

    Article  PubMed  Google Scholar 

  • Yamamoto, C., 1978, Long-term potentiation in thin hippocampal sections studied by intracellular recordings. Exp. Neurol., 58: 242–250.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, C. and Mcllwain, H., 1966, Electrical activities in thin sections from the mammalian brain maintained in chemically-defined media in vitro. J. Neurochem., 13: 1333–1343.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andersen, P. (1982). Physiological and Chemical Control of Hippocampal Neurones. In: Bradford, H.F. (eds) Neurotransmitter Interaction and Compartmentation. NATO Advanced Study Institutes Series, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1140-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1140-9_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1142-3

  • Online ISBN: 978-1-4684-1140-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics