Skip to main content

Incorporation of Transport Molecules into Black Lipid Membranes

  • Chapter

Part of the book series: The Receptors ((REC,volume 1))

Abstract

Receptors are cellular components which have the ability to selectively recognize external signals and which transduce those signals into a message that is meaningful for the cell. The transduction step is, in most cases, mediated by a membrane permeability change induced by a transport molecule associated with the receptor. This fact is immediately obvious in the case of receptors for neurotransmitters where the interaction directly causes a depolarization or hyperpolarization of the postsynaptic membrane due to ionic permeability change. Evidence is, however, mounting that the action of receptors for hormones (Rasmussen, 1975) or antigens (Lauf, 1975) is also associated with ionic permeability change, leading to Ras-mussen’s notion of metallic ions as second messengers. We shall not review the second messenger concept here, but we note it in view of the importance of transport molecules in receptor action.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adragna, N. C., Salas, P. J. I., Parisi, M., and DeRobertis, E., 1975, Curare blocks cationic conductance in artificial membranes containing hydrophobic proteins from cholinergic tissues, Biochem. Biophys. Res. Commun. 62:110.

    PubMed  CAS  Google Scholar 

  • Alvarez, O., Diaz, E., and Latorre, R., 1975, Voltage dependent conductance induced by hemocyanin in black lipid films, Biochim. Biophys. Acta 389:444.

    PubMed  CAS  Google Scholar 

  • Anderson, C. R., and Stevens, C. F., 1973, Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at the frog neuromuscular junction, J. Physiol. (London) 235:655.

    CAS  Google Scholar 

  • Andreoli, T. E., 1974, Planar lipid bilayer membranes, in: Methods in Enzymology, Vol. 32 (S. Fleischer and L. Packer, eds.), Part B, pp. 513–538, Academic Press, New York.

    Google Scholar 

  • Armstrong, C. M., 1975, Ionic pores, gates, and gating currents, Q. Rev. Biophys. 7:179.

    Google Scholar 

  • Bean, R. C., Shepherd, W. C., Chan, H., and Eichner, J., 1969, Discrete conductance fluctuations in lipid bilayer protein membranes, J. Gen. Physiol. 53:741.

    PubMed  CAS  Google Scholar 

  • Blumenthal, R., 1975, The interaction of hemocyanin and lymphocytes with lipid bilayer membranes, Ann. NY Acad. Sci. 264:476.

    PubMed  CAS  Google Scholar 

  • Blumenthal, R., and Shamoo, A. E., 1974, Ionophoric material derived from eel membrane preparations: II. Electrical characteristics, J. Membr. Biol. 19:141.

    PubMed  CAS  Google Scholar 

  • Blumenthal, R., Weinstein, J. N., and Henkart, P., 1977, Lipid model membrane studies on immune cytotoxic mechanisms, in: Proceedings of the 9th Rochester International Conference on Environmental Toxicity—Membrane Toxicity (M. W. Miller, and A. E. Shamoo, eds.), pp. 495–508, Plenum Press, New York.

    Google Scholar 

  • Brennecke, R., Lossen, O., and Schubert, D., 1975, Interactions between black lipid membranes and the loosely bound proteins of erythrocyte membranes, Z. Naturforsch. 30c: 129.

    CAS  Google Scholar 

  • Bretcher, M. S., 1973, Membrane structure: Some general principles, Science 181:622.

    Google Scholar 

  • Cabantchik, Z. I., and Rothstein, A., 1974a, Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation, J. Membr. Biol. 15:207.

    CAS  Google Scholar 

  • Cabantchik, Z. I., and Rothstein, A., 1974b, Membrane proteins related to anion permeability of human red blood cells. II. Effects of proteolytic enzymes on disulfonic stilbene sites of surface proteins, J. Membr. Biol. 15:227.

    CAS  Google Scholar 

  • Cabantchik, Z. I., Baishin, M., Breuer, W., and Rothstein, A., 1975a, Pyridoxal phosphate. An anionic probe for protein amino groups exposed on the outer and inner surfaces of intact human red blood cells, J. Biol. Chem. 250:5130.

    CAS  Google Scholar 

  • Cabantchik, Z. I., Baishin, M., Breuer, W., Markus, H., and Rothstein, A., 1975b, A comparison of intact human red blood cells and resealed and leaky ghosts with respect to their interactions with surface labelling agents and proteolytic enzymes, Biochim. Biophys. Acta 382:621.

    CAS  Google Scholar 

  • Cabantchik, Z. I., Knauf, P. A., Oswald, T., Markus, H., Davidson, L., Breuer, W., and Rothstein, A., 1976, The interaction of an anionic photoreactive probe with the anion transport system of the human red blood cell, Biochim. Biophys. Acta 455:526.

    PubMed  CAS  Google Scholar 

  • Carafoli, E., 1975, The interaction of Ca2+ with mitochondria, with special reference to the structural role of Ca2+ in mitochondrial and other membranes, Mol. Cell. Biochem. 8:133.

    PubMed  CAS  Google Scholar 

  • Carafoli, E., and Crovetti, F., 1973, Interactions between prostaglandin El and calcium at level of mitochondrial membrane, Arch. Biochem. Biophys. 154:40.

    PubMed  CAS  Google Scholar 

  • Carafoli, E., and Sottocasa, G., 1974, The Ca2+ transport system of the mitochondrial membrane and the problem of the Ca2+ carrier, in: Dynamics of Energy-Transducing Membranes (L. Ernster, R. W. Estabrook, and E. C. Slater, eds.), pp. 455–469, Elsevier, Amsterdam.

    Google Scholar 

  • Celis, H., Estrada O S., and Montai, M., 1974, Model translocators for divalent and monovalent ion transport in phospholipid membranes. I. The ion permeability induced in lipid bilayers by the antibiotic X-537A, J. Membr. Biol. 18:187.

    PubMed  CAS  Google Scholar 

  • Collander, R., and Barlund, M., 1933, Permeabilitats-studien an Chara ceratophylla, Acta Bot. Fenn. 11:1.

    Google Scholar 

  • Conrad, M. J., and Penniston, J. T., 1976, Resolution of erythrocyte membrane proteins by two-dimensional electrophoresis, J. Biol. Chem. 251:253.

    PubMed  CAS  Google Scholar 

  • Del Castillo, J., Rodriquez, A., Romero, C. A., and Sanchez, V., 1966, Lipid films as transducers for detection of antigen-antibody enzyme-substrate reactions, Science 153:185.

    PubMed  Google Scholar 

  • DeRobertis, E., and de Plazas, S. R., 1970, Acetylcholinesterase and acetylcholine proteolipid receptor: Two different components of electroplax membranes, Biochim. Biophys. Acta 219:388.

    CAS  Google Scholar 

  • DeRobertis, E., Lunt, G., and LaTorre, J. L., 1971, Multiple binding-sites for acetylcholine in a proteolipid from electric tissue, Mol. Pharmacol. 7:97.

    CAS  Google Scholar 

  • Ehrenstein, G., Lecar, H., and Nossal, R., 1970, The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material, J. Gen. Physiol. 55:119.

    PubMed  CAS  Google Scholar 

  • Ehrenstein, G., Blumenthal, R., Latorre, R., and Lecar, H., 1974, Kinetics of the opening and closing of individual excitability-inducing material channels in a lipid bilayer, J. Gen. Physiol. 63:707.

    PubMed  CAS  Google Scholar 

  • Eisenberg, M., Hall, J. E., and Mead, C. A., 1973, The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes, J. Membr. Biol. 14:143.

    PubMed  CAS  Google Scholar 

  • Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane, Biochemistry 10:2606.

    PubMed  CAS  Google Scholar 

  • Feinstein, M. B., 1964, Reaction of local anesthetics with phospholipids; a possible chemical basis for anesthesia, J. Gen. Physiol. 48:357.

    PubMed  CAS  Google Scholar 

  • Fettiplace, R., Andrews, D. M., and Haydon, D. A., 1971, The thickness, composition and structure of some lipid bilayers and natural membranes, J. Membr. Biol. 5:277.

    CAS  Google Scholar 

  • Fettiplace, R., Gordon, L. G. M., Hladky, S. B., Requena, J., Zingsheim, H. P., and Haydon, D. A., 1975, Techniques in the formation and examination of “black” lipid bilayer membranes, in: Methods in Membrane Biology, Vol. 3 (E. D. Korn, ed.), pp. 1–75, Plenum Press, New York.

    Google Scholar 

  • Finkelstein, A., 1974a, Aqueous pores created in thin lipid membranes by the antibiotics nystatin, amphotericin B and gramicidin A: implicators for pores in plasma membranes, in: Drugs and Transport Processes (B. A. Callingham, ed.), pp. 241–245, Macmillan, New York.

    Google Scholar 

  • Finkelstein, A., 1974b, Bilayers: Formation, measurements, and incorporation of components, in: Methods in Enzymology, Vol. 32 (S. Fleischer and L. Packer, eds.), Part B, pp. 489–500, Academic Press, New York.

    Google Scholar 

  • Goldman, D. E., 1943, Potential, impedance and rectification in membranes, J. Gen. Physiol. 27:37.

    PubMed  CAS  Google Scholar 

  • Goldstein, D. A., and Solomon, A. K., 1960, Determination of equivalent pore radius for human red cells by osmotic pressure measurement, J. Gen. Physiol. 44:11.

    Google Scholar 

  • Gomez-Puyou, A., Gomez-Puyou, M. T., Backer, G., and Lehninger, A. L., 1972, An insoluble Ca2+-binding factor from rat liver mitochondria, Biochem. Biophys. Res. Commun. 47:814.

    PubMed  CAS  Google Scholar 

  • Goodall, M. C., and Sachs, C. 1977, Reconstitution of a proton pump from gastric mucosa, J. Membr. Biol. 35:285–301.

    PubMed  CAS  Google Scholar 

  • Goodall, M. C., Bradley, R. J., Saccomani, G., and Romine, W. O., 1974, Quantum conductance changes in lipid bilayer membranes associated with incorporation of acetylcholine receptors, Nature (London) 250:68.

    CAS  Google Scholar 

  • Gordon, L. G. M., and Haydon, D. A., 1972, The unit conductance of alamethicin, Biochim. Biophys. Acta 255:1014.

    PubMed  CAS  Google Scholar 

  • Grant, C. W. M, and McConnell, H. M., 1974, Glycophorin in lipid bilayers, Proc. Natl. Acad. Sci. USA 71:4653.

    PubMed  CAS  Google Scholar 

  • Gunn, R. B., Dalmark, M., Tosteson, D. C., and Wieth, J. O., 1973, Characteristics of chloride transport in human red blood cells, J. Gen. Physiol. 61:185.

    PubMed  CAS  Google Scholar 

  • Hagins, W. A., 1972, The visual process, Annu. Rev. Biophys. Bioeng. 1:131.

    PubMed  CAS  Google Scholar 

  • Hagins, W. A., and Yoshikami, S., 1977, Intracellular transmission of visual excitation in vertebrate retinal photoreceptors: Electrical effects of chelating agents introduced into rods by vesicle fusion, in: International Symposium on “Vertebrate Photoreception” (P. Fatt and H. B. Barlow, eds.), p. 97, Academic Press, New York.

    Google Scholar 

  • Haydon, D. A., and Hladky, S. B., 1972, Ion transport across thin lipid membranes: A critical discussion of mechanisms in selected systems, Q. Rev. Biophys. 5:187.

    PubMed  CAS  Google Scholar 

  • Henkart, P., and Blumenthal, R., 1975, Interaction of lymphocytes with lipid bilayer membranes: A model for lymphocyte-mediated lysis of target cells. Proc. Natl. Acad. Sci. USA 72:2789.

    PubMed  CAS  Google Scholar 

  • Hille, ., 1970, Ionic channels in nerve membranes, Prog. Biophys. Mol. Biol. 21:1.

    PubMed  CAS  Google Scholar 

  • Hladky, S. B., and Haydon, D. A., 1970, Discreteness of conductance changes in bimolecular lipid membranes in the presence of certain antibiotics, Nature (London) 225:451.

    CAS  Google Scholar 

  • Hladky, S. B., and Haydon, D. A., 1972, Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies on the unit conductance channel, Biochim. Biophys. Acta 274:294.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Katz, B., 1949, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. (London) 108:37.

    CAS  Google Scholar 

  • Hyman, E. S., 1971, Lecithin as a net neutral ionophore, Biophys. Soc. Annu. Meet. Abstr. 11:A10.

    Google Scholar 

  • Jain, M. K., 1972, The Bimolecular Lipid Membrane: A System, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Jain, M. K., 1974, Studies on a reconstituted acetylcholine receptor system: Effects of agonists, Arch. Biochem. Biophys. 164:20.

    PubMed  CAS  Google Scholar 

  • Jain, M. K., White, F. P., Strickholm, A., Williams, A., and Cordes, E. H., 1973a, Cation pump versus Nernst potential (letter to editor), J. Membr. Biol. 11:195.

    Google Scholar 

  • Jain, M. K., Mehl, L. E., and Cordes, E. H., 1973b, Incorporation of eel electroplax acetylcholinerase into black lipid membranes. A possible model for the cholinergic receptor, Biochem. Biophys. Res. Commun. 51:192.

    CAS  Google Scholar 

  • Kafka, M. S., Blumenthal, R., Walker, G. A., and Pollard, M. B., 1978, The effect of dopamines-hydroxylase on the electrical conductance of bimolecular lipid membrane, Membrane Biochemistry 1:279.

    PubMed  CAS  Google Scholar 

  • Kahn, C. R., 1976, Membrane receptors for hormones and neurotransmitters, J. Cell Biol. 70:261.

    PubMed  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1971, Further observations on acetylcholine noise, Nature (London) New Biol. 252:124.

    Google Scholar 

  • Kemp, G., Dolly, J. A., Barnard, E. A., and Wenner, C. E., 1973, Reconstitution of a partially purified endplate acetylcholine receptor preparation in lipid bilayer membranes, Biochem. Biophys. Res. Commun. 54:607.

    PubMed  CAS  Google Scholar 

  • Kimelberg, H. K., 1976, Protein-liposome interactions and their relevance to the structure and function of cell membranes, Mol. Cell Biochem. 10:171.

    PubMed  CAS  Google Scholar 

  • Kinsky, S. C., 1972, Antibody-complement interaction with lipid model membranes. Biochim. Biophys. Acta 265:1.

    PubMed  CAS  Google Scholar 

  • Krikpatrick, F. H., 1976, Spectrin: Current understanding of its physical, biochemical and functional properties, Life Sci. 19:1.

    Google Scholar 

  • Kirschner, L. B., 1964, Phosphatidylserine as a possible participant in active sodium transport in erythrocytes, Arch. Biochem. Biophys. 68:499.

    Google Scholar 

  • Kirtland, S. J., and Baum, H., 1972, Prostaglandin-El may act as a calcium ionophore, Nature (London) 236:47.

    CAS  Google Scholar 

  • Knauf, P. A., and Rothstein, A., 1971, Chemical modification of membranes. II. Permeation paths for sulfhydryl agents, J. Gen. Physiol. 58:211.

    PubMed  CAS  Google Scholar 

  • Kometani, T., Ikeda, Y., and Kasai, M., 1975, Acetylcholine-binding substance extracted by using organic solvent and acetylcholine receptor of electric organ of Narke japonica, Biochim. Biophys. Acta 412:415.

    Google Scholar 

  • Krasne, S., Eisenman, G., and Szabo, G., 1971, Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin, Science 174:412.

    PubMed  CAS  Google Scholar 

  • Ksenzhek, O. S., Omerchenko, A. M., and Koganov, M. M., 1974, Discrete conductance induced in bilayer lipid membranes by sodium dodecyl sulfate, Transi. Dokl. Biophys. 218:61.

    Google Scholar 

  • Latorre, J. L., Lunt, G., and DeRobertis, E., 1970, Isolation of a cholinergic proteolipid receptor from electric tissue, Proc. Natl. Acad. Sci. USA 65:716.

    CAS  Google Scholar 

  • Latorre, R., Ehrenstein, G., and Lecar, H., 1972, Ion transport through excitability inducing material (EIM) channels in lipid bilayer membranes, J. Gen. Physiol. 60:72.

    PubMed  CAS  Google Scholar 

  • Latorre, R., Alvarez, O., and Verdugo, P., 1974, Temperature characterization of the conductance of the excitability inducing material channel in oxidized cholesterol membranes, Biochim. Biophys. Acta 367:361.

    PubMed  CAS  Google Scholar 

  • Lauf, P. K., 1975, Antigen-antibody reactions and cation transport in biomembranes: Immunophysiological aspects, Biochim. Biophys. Acta 415:173.

    PubMed  CAS  Google Scholar 

  • Lea, E. J. A., Rich G. T., and Segrest, J. P., 1975, The effects of the membrane-penetrating polypeptide segment of the human erythrocyte MN-glycoprotein on the permeability of model lipid membranes, Biochim. Biophys. Acta 382:41.

    PubMed  CAS  Google Scholar 

  • LeFevre, P. G., Habich, K. I., Hess, H. S., and Hudson, M. R., 1964, Phospholipid-sugar complexes in relation to cell membrane monosaccharide transport, Science 143:955.

    PubMed  CAS  Google Scholar 

  • LeFevre, P. G., Jung, C. Y., and Chaney, J. E., 1968, Glucose transfer by red cell membrane phospholipids in H2O/CHCl3/H2O three-layer systems, Arch. Biochem. Biophys. 126:677.

    PubMed  CAS  Google Scholar 

  • Lehninger, A. L., 1971, A soluble, heat-labile, high-affinity Ca++-binding factor extracted from rat liver mitochondria, Biochem. Biophys. Res. Commun. 42:312.

    PubMed  CAS  Google Scholar 

  • Leuzinger, W., and Schneider, M., 1972, Acetylcholine-induced excitation on bilayers, Experientia 28:256.

    PubMed  CAS  Google Scholar 

  • Levinson, S. R., and Keynes, R. D., 1972, Isolation of acetycholine receptors by chloroform-methanol extraction: Artifacts arising in use of Sephadex LH-20 columns, Biochim. Biophys. Acta 288:241.

    PubMed  CAS  Google Scholar 

  • Lossen, O., Brennecke, R., and Schubert, D., 1973, Electrical properties of black membranes from oxidized cholesterol and a strongly bound protein fraction of human erythrocyte membranes, Biochim. Biophys. Acta 330:132.

    PubMed  CAS  Google Scholar 

  • Lovenberg, W., Goodwin, J. S., and Wallace, E. F., 1975, Molecular properties and regulation of dopamine-β-hydroxylase, in: Neurobiological Mechanisms of Adaptation and Behavior (A. J. Mandell, ed.), pp. 77–93, Raven Press, New York.

    Google Scholar 

  • Marchesi, V. T., Steers, E., Jr., Tillack, T. W., and Marchesi, S. L., 1969, Red Cell Membrane Structure and Function, p. 117, Lippincott, Philadelphia.

    Google Scholar 

  • Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P., and Scott, R. E., 1972, Chemical characterization and surface orientation of major glycoproteins of human erythrocyte-membranes, Proc. Natl. Acad. Sci. USA 69:1445.

    PubMed  CAS  Google Scholar 

  • Margoliash, E. G., Barlow, G. H., and Byers, V., 1970, Differential binding properties of cytochromec—possible relevance for mitochondrial ion transport, Nature (London) 228:723.

    CAS  Google Scholar 

  • Masuda, H., and deMeis, L., 1974, Calcium efflux from sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 332:313.

    CAS  Google Scholar 

  • Michaels, D. W., Abramovitz, A. S., Hammer, C. H., and Mayer, M. M., 1976, Increased ion permeability of planar lipid bilayer membranes after treatment with the C5b-9 cytolytic attack mechanism of complement, Proc. Natl. Acad. Sci. USA 73:2852.

    PubMed  CAS  Google Scholar 

  • Minassian-Saraga, T. L., and Wietzerbin, J., 1970, The action of hexidecyltrimethyl ammonium bromide, Biochem. Biophys. Res. Commun. 41:1231.

    PubMed  CAS  Google Scholar 

  • Montai, M., 1972, Lipid-polypeptide interactions in bilayer lipid membranes, J. Membr. Biol. 7:245.

    Google Scholar 

  • Montai, M., 1974, Formation of bimolecular membranes from lipid monolayers, in: Methods in Enzymology, Vol. 32 (S. Fleischer and L. Packer, eds.), Part B, pp. 545–554, Academic Press, New York.

    Google Scholar 

  • Montai, M., 1976, Experimental membranes and mechanism of bioenergy-transductions, Annu. Rev. Biophys. Bioeng. 5:119.

    Google Scholar 

  • Montai, M., and Mueller, P., 1972, Formation of bimolecular membranes from lipid monolayers, and a study of their electrical properties, Proc. Natl. Acad. Sci. USA 69:3561.

    Google Scholar 

  • Moore, C., and Pressman, B. D., 1964, Mechanism of action of valinomycin on mitochondria, Biochem. Biophys. Res. Commun. 15:562.

    CAS  Google Scholar 

  • Moore, J. M., and Schechter, R. S., 1969, Transfer of ions against their chemical potential gradient through oil membranes, Nature (London) 222:476.

    CAS  Google Scholar 

  • Mueller, P., and Rudin, D. O., 1963, Induced excitability in reconstituted cell membrane structure, J. Theor. Biol. 4:268.

    PubMed  CAS  Google Scholar 

  • Mueller, P., and Rudin, D. O., 1969a, Bimolecular lipid membranes: Techniques of formation, study of electrical properties, and induction of ionic gating phenomena, in: Laboratory Techniques in Membrane Biophysics (H. Passow and R. Stampfli, eds.), pp. 141–145, Springer, Berlin.

    Google Scholar 

  • Mueller, P., and Rudin, D. O., 1969b, Translocators in bimolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions, in: Current Topics in Bioenergetics, Vol. 3 (D. R. Sanadi, ed.), pp. 157–249, Academic Press, New York.

    Google Scholar 

  • Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C., 1964, Formation and properties of bimolecular lipid membranes, Recent Prog. Surf. Sci. 1:379.

    CAS  Google Scholar 

  • Osterhout, W. J. V., and Stanley, W. M., 1932, The accumulation of electrolytes. V. Models showing accumulation and a steady state, J. Gen. Physiol. 15:667.

    PubMed  CAS  Google Scholar 

  • Oxender, D. L., and Quay, S., 1975, Binding proteins and membrane-transport, Ann. NY Acad. Sci. 264:358.

    PubMed  CAS  Google Scholar 

  • Pagano, R., and Thompson, T. E., 1967, Spherical lipid bilayer membranes, Biochim. Biophys. Acta 144:866.

    Google Scholar 

  • Pagano, R., Ruysschaert, J. M., and Miller, I. R., 1972, The molecular composition of some lipid bilayer membranes in aqueous solution, J. Membr. Biol. 10:11.

    PubMed  CAS  Google Scholar 

  • Palade, G., 1975, Intracellular aspects of the process of protein synthesis, Science 189:347.

    PubMed  CAS  Google Scholar 

  • Pant, H. C., and Conran, P., 1972, Keyhole limpet hemocyanin (KLM)-lipid bilayer membrane (BLM) interaction, J. Membr. Biol. 8:357.

    CAS  Google Scholar 

  • Papahadjopoulos, D., Jacobson, K., Nir, S., and Isac, T., 1973, Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol, Biochim. Biophys. Acta 311:330.

    PubMed  CAS  Google Scholar 

  • Parisi, M., Rivas, E., and DeRobertis, E., 1971, Conductance changes produced by acetylcholine in lipidic membranes containing a proteolipid from Electrophorus, Science 172:56.

    CAS  Google Scholar 

  • Parisi, M., Reader, T. A., and DeRobertis, E., 1972, Conductance properties of artificial lipidic membranes containing a proteolipid from Electrophorus response to cholinergic agents, J. Gen. Physiol. 60:454.

    PubMed  CAS  Google Scholar 

  • Parisi, M., Adragna, C., and Sala, P. J. I., 1975, The influence of negative lipids on the interactions between artificial membranes and cholinergic drugs, Nature (London) 258:245.

    CAS  Google Scholar 

  • Passow, H., 1969, Passive ion permeability of the erythrocyte membrane, in: Progress in Biophysics and Molecular Biology, Vol. 19 (J. A. V. Butler and D. Noble, eds.), p. 424, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Passow, H., 1971, Effects of pronase on passive ion permeability of human red blood cell, J. Membr. Biol. 6:233.

    CAS  Google Scholar 

  • Pressman, B. C., 1973, Properties of ionophores with broad range cation selectivity, Fed. Proc. 32:1698.

    PubMed  CAS  Google Scholar 

  • Pressman, B. C., and deGuzman, N. T., 1974, New ionophores for old organelles, Ann. NY Acad. Sci. 227:380.

    PubMed  CAS  Google Scholar 

  • Prestipino, G., Ceccarilli, D., Conti, F., and Carafoli, E., 1974, Interactions of a mitochondrial Ca2+-binding glycoprotein with lipid bilayer membranes, FEBS Lett. 45:99.

    PubMed  CAS  Google Scholar 

  • Rasmussen, M., 1975, Ions as “second messengers,” in: Cell Membranes (G. Weismann and R. Claiborne, eds.), pp. 203–212, H.P. Publishing, New York.

    Google Scholar 

  • Reader, T. A., and DeRobertis, E., 1974, The response of artificial lipid membranes containing a cholinergic hydrophobic protein from Electrophorus electroplax, Biochim. Biophys. Acta 352:192.

    PubMed  CAS  Google Scholar 

  • Romine, W. O., Goodall, M. C., Peterson, J., and Bradley, R. J., 1974, The acetylcholine receptor. Isolation of a brain nicotinic receptor and its preliminary characterization in lipid bilayer membranes, Biochim. Biophys. Acta 367:316.

    PubMed  CAS  Google Scholar 

  • Rosano, H. L., Duby, P., and Schulman, J. H., 1961, Mechanism of the selective flux of salts and water migration through non-aqueous liquid membranes, J. Phys. Chem. 65:1704.

    CAS  Google Scholar 

  • Rosenberg, B., and Pant, H. C., 1970, The semiconducting rectifier behaviour of a bimolecular lipid membrane, Chem. Phys. Lipids 4:203.

    PubMed  CAS  Google Scholar 

  • Rothstein, A., and Cabantchik, Z. I., 1974, Protein structures involved in the anion permeability of the red blood cell membrane, in: Comparative Biochemistry and Physiology of Transport (L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds.), pp. 354–362, North-Holland, Amsterdam.

    Google Scholar 

  • Rothstein, A., Knauf, P. A., Cabantchik, Z. I., and Baishin, M., 1974, The location and chemical nature of drug “targets” within the human erythrocyte membrane, in: Drugs and Transport Processes, a Symposium (B. A. Callingham, ed.), pp. 53–72, Macmillan, New York.

    Google Scholar 

  • Rothstein, A., Cabantchik, Z. I., Balshin, M., and Juliano, R., 1975, Enhancement of anion permeability in lecithin vesicles by hydrophobic proteins extracted from red blood cell membranes, Biochem. Biophys. Res. Commun. 64:144.

    PubMed  CAS  Google Scholar 

  • Rothstein, A., Cabantchik, Z. I., and Knauf, P., 1976a, Mechanism of anion transport in red blood cells: Role of membrane proteins, Fed. Proc. 35:3.

    CAS  Google Scholar 

  • Rothstein, A., Takeshita, M., and Knauf, P. A., 1976b, Chemical modification of proteins involved in the permeability of the erythrocyte membrane to ions, in: Biomembranes, Vol. 3, Passive Permeability of Cell Membranes (F. Kreuzer and J. F. G. Siegers, eds.), pp. 393–413, Plenum Press, New York.

    Google Scholar 

  • Sachs, F., and Lecar, M., 1973, Acetylcholine noise in tissue culture muscle cells, Nature (London) New Biol. 246:214.

    CAS  Google Scholar 

  • Sachs, G., Speeny, J. G., Saccomani, G., and Goodall, M. C., 1974, Characterization of gastric mucosal membranes. VI. The presence of channel-forming substances, Biochim. Biophys. Acta 332:233.

    CAS  Google Scholar 

  • Schneider, P. B., and Wolff, J., 1965, Thyroidal iodide transport. VI. On a possible role for iodide-binding phospholipids, Biochim. Biophys. Acta 94:114.

    PubMed  CAS  Google Scholar 

  • Seufert, W. D., 1965, Induced permeability changes in reconstituted cell membrane structure, Nature (London) 207:174.

    CAS  Google Scholar 

  • Shamoo, A. E., 1974, Isolation of a sodium-dependent ionophore from (Na+ + K+)-ATPase preparations, Ann. NY Acad. Sci. 242:389.

    PubMed  CAS  Google Scholar 

  • Shamoo, A. E., 1975, Carriers and channels in biological systems, Ann. NY Acad. Sci. 264:1.

    Google Scholar 

  • Shamoo, A. E., and Albers, R. W., 1973, Na+-selective ionophoric material derived from electric organ and kidney membranes, Proc. Natl. Acad. Sci. USA 70:1191.

    PubMed  CAS  Google Scholar 

  • Shamoo, A. E., and Eldefrawi, M. E., 1975, Carbamylcholine and acetylcholine-selective cation-selective ionophore as part of the purified acetylcholine receptor, J. Membr. Biol. 25:47.

    PubMed  CAS  Google Scholar 

  • Shamoo, A. E., and Goldstein, D. A., 1977, Isolation of ionophores from ion transport systems and their role in energy transduction, Biochim. Biophys. Acta, 472:13.

    PubMed  CAS  Google Scholar 

  • Shamoo, A. E., and MacLennan, D. H., 1974, A Ca++-dependent and selective ionophore as part of the Ca++ + Mg++-ATPase in sarcoplasmic reticulum, Proc. Natl. Acad. Sci. USA 71:3522.

    PubMed  CAS  Google Scholar 

  • Shamoo, A. E., and MacLennan, D. H., 1975, Separate effects of mercurial compounds on the ionophoric and hydrolytic functions of the Ca++ + Mg++-ATPase of sarcoplasmic reticulum. J. Membr. Biol. 25:65.

    PubMed  CAS  Google Scholar 

  • Shamoo, A. E., and Myers, M., 1974, Na+-dependent ionophore as part of the small polypeptide of the (Na+ + K+)-ATPase from eel electroplax membrane, J. Membr. Biol. 19:163.

    PubMed  CAS  Google Scholar 

  • Shamoo, A. E., and Ryan, T. E., 1975, Isolation of ionophores from ion-transport systems, Ann. NY Acad. Sci. 264:83.

    PubMed  CAS  Google Scholar 

  • Shamoo, A. E., Myers, M., Blumenthal, R., and Albers, R. W., 1974, Ionophoric material derived from eel membrane preparation. I. Chemical characteristics, J. Membr. Biol. 19:129.

    PubMed  CAS  Google Scholar 

  • Shamoo, A. E., Thompson, T. E., Campbell, K. P., Scott, T. L., and Goldstein, D. A., 1975, Mechanism of action of “ruthenium red” compounds on Ca++ ionophore from sarcoplasmic reticulum (Ca+ + + Mg+ +)-ATPase and lipid bilayer, J. Biol. Chem. 250:8289.

    PubMed  CAS  Google Scholar 

  • Shamoo, A. E., MacLennan, D. H., and Eldefrawi, M. E., 1976a, Differential effects of mercurial compounds on excitable tissues, Chem. Biol. Interact. 12:41.

    CAS  Google Scholar 

  • Shamoo, A. E., Ryan, T. H., Stewart, P. S., and MacLennan, D. H., 1976b, Localization of ionophore activity in a 20,000 dalton fragment of the adenosine triphosphatase of sarcoplasmic reticulum, J. Biol Chem. 251:4147.

    CAS  Google Scholar 

  • Solomon, A. K., Lionetti, F., and Curran, P. F., 1956, Possible cation-carrier substances in blood, Nature (London) 178:582.

    CAS  Google Scholar 

  • Sottocasa, G., Sandri, G., Panfili, E., deBernard, B., Gazzotti, P., Vasington, F. D., and Carafoli, E., 1972, Isolation of a soluble Ca2+ binding glycoprotein from ox liver mitochondria, Biochem. Biophys. Res. Commun. 47:808.

    PubMed  CAS  Google Scholar 

  • Stewart, P. S., MacLennan, D. H., and Shamoo, A. E., 1976, Isolation and characterization of tryptic fragments of the ATPase of sarcoplasmic reticulum, J. Biol. Chem. 251:712.

    PubMed  CAS  Google Scholar 

  • Szabo, J., Eisenman, G., and Ciani, S., 1969, The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes, J. Membr. Biol. 1:346.

    Google Scholar 

  • Thorley-Lawson, D. A., and Green, N. M., 1975, Separation and characterization of tryptic digestion from the ATPase of sarcoplasmic reticulum, Eur. J. Biochem. 59:193.

    PubMed  CAS  Google Scholar 

  • Tien, H. T., 1974, Bilayer Lipid Membranes (BLM) Theory and Practice, Dekker, New York.

    Google Scholar 

  • Tosteson, M. T., Lau, F., and Tosteson, D. C., 1973, Incorporation of a functional membrane glycoprotein into lipid bilayer membranes, Nature (London) New Biol. 243:112.

    CAS  Google Scholar 

  • Tyson, C. A., Zande, H. V., and Green, D. E., 1976, Phospholipids as ionophores, J. Biol. Chem. 251:1326.

    PubMed  CAS  Google Scholar 

  • Urry, D. W., Long, M. M., Jacobs, M., and Harris, R. D., 1975, Conformation and molecular mechanisms of carriers and channels, Ann. NY Acad. Sci. 264:703.

    Google Scholar 

  • Vale, M. G. P., and Carvalho, A. P., 1973, Effects of ruthenium red on Ca++ uptake and ATPase of sarcoplasmic reticulum of rabbit skeletal muscle, Biochim. Biophys. Acta 324:29.

    Google Scholar 

  • Van Zutphen, H., Merola, A. J., Brierly, G. P., and Cornwell, D. G., 1972, The interaction of nonionic detergents with lipid bilayer membranes, Arch. Biochem. Biophys. 152:755.

    PubMed  Google Scholar 

  • Wallace, E. F., Krantz, M. J., and Lovenberg, W., 1975, Dopamine-ß-hydroxylase: A tetrameric glycoprotein, Proc. Natl. Acad. Sci. USA 70:2253.

    Google Scholar 

  • Winkler, M., Mortnagl, M., and Smith, A. D., 1970, Membrane of the adrenal medulla, Biochem. J. 118:303.

    PubMed  CAS  Google Scholar 

  • Wojtczak, L., 1974, Effect of fatty acids and acyl-CoA on the permeability of mitochondrial membranes to monovalent cations, FEBS Lett. 44:25.

    PubMed  CAS  Google Scholar 

  • Wyssbrod, H. R., Scott, W. N., Brodsky, W. A., and Schwartz, I. L., 1971, Carrier-mediated transport processes, in: Handbook of Neuro chemistry, Vol. 5 (A. Lajtha, ed.), Chap. 21, pp. 683–691, Plenum Press, New York.

    Google Scholar 

  • Yafuso, M., Kennedy, S. J., and Freeman, A. R., 1974, Spontaneous conductance changes, multilevel conductance states and negative differential resistance in oxidized cholesterol black lipid membranes, J. Membr. Biol. 17:201.

    PubMed  CAS  Google Scholar 

  • Yguerabide, J., and Stryer, L., 1971, Fluorescence spectroscopy of an oriented model membrane, Proc. Natl. Acad. Sci. USA 68:1217.

    PubMed  CAS  Google Scholar 

  • Zaki, L., Fasold, H., Schuhmann, B., and Passow, H., 1975, Chemical modification of membrane proteins in relation to inhibition of anion exchange in human red blood cells, J. Cell Physiol. 86:471.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Blumenthal, R., Shamoo, A.E. (1979). Incorporation of Transport Molecules into Black Lipid Membranes. In: O’Brien, R.D. (eds) General Principles and Procedures. The Receptors, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0979-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0979-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0981-9

  • Online ISBN: 978-1-4684-0979-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics