Skip to main content

Chemoreceptor Proteins

  • Chapter

Abstract

Even though hundreds of allomonic or kairomonic molecules have been shown to affect insect behavior through neurophysiological actions, little research attention has been given to the involved energy-transferring macromolecules in chemosensitive neurons in sensilla. Much of the consideration of receptor aspects of insect chemical communication that has occurred has involved making inferences based on the properties of the messenger molecules and the characteristics of resultant insect behavior (e.g., Kafka and Neuwirth, 1975). However, direct study of candidate receptors has involved the “sugar-splitting” enzyme activity in the receptor-containing leg of the blowfly, Phormia regina, as initiated by Dethier (1955). Hansen (1969) subsequently showed a correlation between the distribution of glucosidase activity and the number of chemosensilla on the tarsus of the blowfly. It was proposed that a sugar-glucosidase complex formed as the first reaction between the sugar and the receptor. Norris and coworkers (Gilbert et al., 1967) started research on the 1, 4-naphthoquinones (e.g., juglone in Carya spp.) as allomones for Scolytus multistriatus and Periplaneta americana, and have investigated the neural receptors for these ligands. Findings on the sugar receptor of the blowfly and the naphthoquinone (e.g., bitter) receptor of the latter two mentioned insects will be the focus of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amakawa, T., K. Kawabata, H. Kijima, and H. Morita. 1972. Isozymes of ∝-glucosidases in the proboscis and legs of flies. J. Insect Physiol. 28: 541–553.

    Article  Google Scholar 

  • Amakawa, T., H. Kijima, and H. Morita. 1975. Insoluble ∝-glucosidase: possible pyranose site of the sugar receptor of the labella of the blowfly Phormia regina. J. Insect Physiol. 21: 1419–1425.

    Article  PubMed  CAS  Google Scholar 

  • Baker, J.E., and D.M. Norris. 1971. Neurophysiological and biochemical effects of naphthoquinones on the central nervous system of Periplaneta. J. Insect Physiol. 17: 2383–2394.

    Article  PubMed  CAS  Google Scholar 

  • Benz, G., Structure — Activity Relationships in Chemoreception. Information Retrieval Limited, London, 1976.

    Google Scholar 

  • Borg, T.K., and D.M. Norris. 1971. Ultrastructure of sensory receptors on the antennae of Scolytus multistriatus. Z. Zellforsch. 113: 13–28.

    Article  PubMed  CAS  Google Scholar 

  • Brkička, R. 1933. Coll. Czech. Chem. Comm. 5:112.

    Google Scholar 

  • Dethier, V.G. 1955. Mode of action of sugar-baited flytraps. J. Econ. Entomol. 48: 235–239.

    Google Scholar 

  • Gilbert, B.L., J.E. Baker, and D.M. Norris. 1967. Juglone (5-hydroxy-1,4-naphthoquinone) from Carya ovata, a deterrent to feeding by Scolytus multistriatus. J. Insect Physiol. 13: 1453–1459.

    Article  CAS  Google Scholar 

  • Grabowski, C.T., and V.G. Dethier. 1954. The structure of the tarsal chemoreceptors of the blowfly, Phormia regina Meigen. J. Morphol. 94: 1–17.

    Article  Google Scholar 

  • Hansen, K. The mechanism of insect sugar reception, a biochemical investigation, pp.382–39, in Olfaction and Taste, III. Rockefeller University Press, New York, 1969.

    Google Scholar 

  • Kafka, W.A., and J. Neuwirth. 1975. A model of pheromone moleculeacceptor interaction. Z. Naturforsch. 30c: 278–282.

    CAS  Google Scholar 

  • Kijima, H., T. Amakawa, M. Nakashima, and H. Morita. 1977. Properties of membrane-bound ∝-glucosidases: possible sugar receptor protein of the blowfly, Phormia regina. J. Insect Physiol. 23: 469–479.

    Article  PubMed  CAS  Google Scholar 

  • Kijima, I., O. Koizumi, and H. Morita. 1973. ∝-Glucosidase at the tip of the contact chemosensory seta of the blowfly, Phormia regina. J. Insect Physiol. 19: 1351–1362.

    Article  CAS  Google Scholar 

  • Koizumi, Q., J. Kijima, and H. Morita. 1974. Characterization of ∝-glucosidase at the tips of the chemosensory setae of the fly, Phormia regina. J. Insect Physiol. 20: 925–934.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, J.R. 1962. The fine structure of the labellar chemosensory hairs of the blowfly Phormia regina Meig. J, Insect Physiol. 8: 683–691.

    Article  Google Scholar 

  • Mansour, N.A., M.E. Eldefrawi, and A.T. Eldefrawi. 1977. Isolation of putative acetylcholine receptor proteins from housefly brain. Biochemistry 16: 4126–4132.

    Article  PubMed  CAS  Google Scholar 

  • Norris, D.M. 1977. Role of repellents and deterrents in feeding by Scolytus multistriatus, in Host Plant Resistance to Pests, ACS Symposium Ser. No. 62: 215-230.

    Google Scholar 

  • Norris, D.M. 1976a. A molecular and submolecular mechanism of insect perception of certain chemical information in their environment. Colloq. Intern. Cent. Nat. Rech. Sci. 265: 81–102.

    CAS  Google Scholar 

  • Norris, D.M. 1976b. Physico-chemical aspects of the effects of certain phytochemicals on insect gustation. Symp. Biol. Hung. 26: 197–201.

    Google Scholar 

  • Norris, D.M. 1976c. How certain insects take the bitter with the sweet. Bull. Entomol. Soc. Amer. 22: 27–30.

    Google Scholar 

  • Norris, D.M. 1970. Quinol stimulation and quinone deterrency of gustation by Scolytus multistriatus. Ann. Entomol. Soc. Amer. 63: 476–478.

    CAS  Google Scholar 

  • Norris, D.M. 1969. Transduction mechanism in olfaction and gustation. Nature 222: 1263–1264.

    Article  PubMed  CAS  Google Scholar 

  • Norris, D.M., and H.M. Chu. 1974a. Morphology and ultrastructure of the antenna of male Periplaneta americana as related to chemoreception (Blatt., Blattidae). Cell Tissue Res. 150: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Norris, D.M., and H.M. Chu. 1974b. Chemosensory mechanism in Periplaneta americana: Electroantennogram comparisons of certain quinone feeding inhibitors. J. Insect Physiol. 20: 1687–1696.

    Article  PubMed  CAS  Google Scholar 

  • Norris, D.M., S.M. Ferkovich, J.E. Baker, J.M. Rozental, and T.K. Borg. 1971. Energy transduction in quinone inhibition of insect feeding. J. Insect Physiol. 17: 85–97.

    Article  CAS  Google Scholar 

  • Norris, D.M., and S.M. Ferkovich, J.M. Rozental, J.E. Baker, and T.K. Borg. 1970. Energy transduction: Inhibition of cockroach feeding by naphthoquinones. Science 170: 754–755.

    Article  PubMed  CAS  Google Scholar 

  • Norris, D.M., J.M. Rozental, G. Samberg, and G. Singer. 1977a. Protein-sulfur dependent differences in the nerve receptors for repellent 1,4-naphthoquinones in two strains of Periplaneta americana. Comp. Biochem. Physiol. 57C: 55–59.

    Google Scholar 

  • Norris, D.M., M.F. Ryan, and J.J. Piotrowski. 1977b. Purification of olfactory receptor from primary sensory neurons. Trans. Amer. Soc. Neurochem. 8:191.

    Google Scholar 

  • Norris, D.M., M.F. Ryan, J.J. Piotrowski, and J. Hageman. 1977c. Interactions between repellent quinones and purified receptor lipoprotein from Periplaneta americana sensory neurons. Proc. Intern. Symp. Olfaction Taste 6: in press.

    Google Scholar 

  • Rozental, J.M., and D.M. Norris. 1975. Genetically variable olfactory receptor sensitivity in Periplaneta americana. Life Sciences 17: 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Rozental, J.M., G. Singer, and D.M. Norris. 1975. Affinities of certain quinone repellents for detergent-solubilized proteins from Periplaneta americana antennae. Biochem. Biophys. Res. Commun. 65: 1040–1046.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, I., A. Shiraishi, H. Kijima, and H. Morita. 1974. Separation of two receptor sites in a single labellar sugar receptor of the flesh-fly by treatment with p-chloromercuricbenzoate. J. Insect Physiol. 20: 605–621.

    Article  PubMed  CAS  Google Scholar 

  • Singer, G., and D.M. Norris. 1973a. A disc-electrophoresis investigation of certain characteristics of Triton X-100 solubilized proteins from male Periplaneta americana. Experientia 29: 1483–1484.

    Article  CAS  Google Scholar 

  • Singer, G., and D.M. Norris. 1973b. Comparative disc-electrophoretic study of different proteinaceous extracts from Periplaneta americana males. Comp. Biochem. Physiol. 46B: 43–56.

    Google Scholar 

  • Singer, G., J.M. Rozental, and D.M. Norris. 1975. Sulphydryl groups and the quinone receptor in insect olfaction and gustation. Nature 256: 222–223.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Norris, D.M. (1979). Chemoreceptor Proteins. In: Narahashi, T. (eds) Neurotoxicology of Insecticides and Pheromones. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0970-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0970-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0972-7

  • Online ISBN: 978-1-4684-0970-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics