Skip to main content

Properties of Water in Red Cell and Synthetic Membranes

  • Chapter
Biomembranes : Passive Permeability of Cell Membranes

Part of the book series: Biomembranes ((B,volume 3))

Abstract

Water molecules within biological membranes are in close proximity to the protein and phospholipid molecules that comprise the membrane. Does this propinquity to charged groups impart any unusual properties to the water molecules, or do they behave as in free solution? Does water use aqueous pathways in crossing biological membranes or does it cross by dissolution in the membrane? Relevant information concerning these questions is now available from both the physical chemical and the biological literature and this essay will draw on evidence from both sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collander, R. and H. Barlund (1933). Permeabilitätstudien an Chara ceratophylla II. Die Permeabilität für Nichtelektrolyte. Acta Botanica Fennica 11:, 1.

    Google Scholar 

  2. Höber, R. and S.L. Ørskov (1933). Untersuchungen über die Permeiergeschwindigkeit von Anelektrolyten bei den roten Blutkörperchen verschiedener Tierarten. Pflügers Arch. Ges. Physiol. 231:, 599.

    Article  Google Scholar 

  3. Green, J.W. (1949). The relative rate of penetration of the lower saturated monocarboxylic acids into mammalian erythrocytes. J. Cellular Comp. Physiol. 33:, 247.

    Article  CAS  Google Scholar 

  4. Schultz, S.G. and A.K. Solomon (1961). Determination of the effective hydrodynamic radii of small molecules by viscometry. J. Gen. Physiol. 44:, 1189.

    Article  PubMed  CAS  Google Scholar 

  5. Giebel, O. and H. Passow (1960). Die Permeabilität der Erythrocytenmembran für organische Anionen. Pflügers Arch. Ges. Physiol. 271:, 378

    Article  CAS  Google Scholar 

  6. Horowitz, S.B. and I.R. Fenichel (1964). Solute diffusional specificity in hydrogen-bonding systems. J. Phys. Chem. 68:, 3378.

    Article  CAS  Google Scholar 

  7. Franks, F. and O.J.G. Ives (1966). The structural properties of alcohol-water mixtures. Quart. Rev. 20:, 1.

    Article  CAS  Google Scholar 

  8. Pimentel, G.C. and A.L. McClellan (1960). The Hydrogen Bond. W.H. Freeman and Company, San Francisco, Section 2.4.7 p. 52.

    Google Scholar 

  9. Bates, W.W. and M.E. Hobbs (1951). The dipole moments of some acid amides and the structure of the amide group. J. Amer. Chem. Soc. 73:, 2151.

    Article  CAS  Google Scholar 

  10. Gary-Bobo, C.M., R. DiPolo and A.K. Solomon (1969). Role of hydrogen-bonding in nonelectrolyte diffusion through dense artificial membranes. J. Gen. Physiol. 59:, 369.

    Article  Google Scholar 

  11. Gary-Bobo, C.M. and H.W. Weber (1969). Diffusion of alcohols and amides in water from 4 to 37°C. J. Phys. Chem. 73:, 1155.

    Article  CAS  Google Scholar 

  12. Longsworth, L.G. (1963). Diffusion in the water-methanol system and the Waiden product. J. Phys. Chem. 67:, 689.

    Article  CAS  Google Scholar 

  13. Sha’afi, R.I., C.M. Gary-Bobo and A.K. Solomon (1971). Permeability of red cell membranes to small hydrophilic and lipophilic solutes. J. Gen. Physiol. 58:, 238.

    Article  PubMed  Google Scholar 

  14. Collander, R. (1949). Die Verteilung organischer Verbindungen zwischen Äther und Wasser. Acta Chem. Scand. 3:, 717.

    Article  CAS  Google Scholar 

  15. Savitz, D. and A.K. Solomon (1971). Tracer determinations of human red cell membrane permeability to small nonelectrolytes. J. Gen. Physiol. 58:, 259.

    Article  PubMed  CAS  Google Scholar 

  16. Andreoli, T.E., V.W. Dennis and M. Weigl (1969). The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes, J. Gen. Physiol. 53:, 133.

    Article  PubMed  CAS  Google Scholar 

  17. Holz, R. and A. Finkelstein (1970). The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. Gen. Physiol. 56:, 125.

    Article  PubMed  CAS  Google Scholar 

  18. Cass, A., A. Finkelstein and V. Krespi (1970). The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. Gen. Physiol. 56:, 100.

    Article  PubMed  CAS  Google Scholar 

  19. Mechlinski, W., C.P. Schaffner, P. Ganis and G. Avitabile (1970). Structure and absolute configuration of the polyene macrolide antibiotic amphotericin B. Tetrahedron Letters 44:, 3873.

    Article  Google Scholar 

  20. Solomon, A.K. (1968). Characterization of biological membranes by equivalent pores. J. Gen. Physiol. 51:, 335s.

    PubMed  CAS  Google Scholar 

  21. Goldstein, D.A. and A.K. Solomon (1960). Determination of equivalent pore radius for human red cells by osmotic pressure measurement. J. Gen. Physiol. 44:, 1.

    Article  PubMed  CAS  Google Scholar 

  22. Gary-Bobo, C.M., Y. Lange and J.-L. Rigaud (1971). Water diffusion in lecithin-water and lecithin-cholesterol-water lamellar phases at 22°C. Biochim. Biophys. Acta 233:, 243.

    Article  PubMed  CAS  Google Scholar 

  23. Lecuyer, H. and D.G. Dervichian (1969). Structure of aqueous mixtures of lecithin and cholesterol. J. Mol. Biol. 45:, 39.

    Article  PubMed  CAS  Google Scholar 

  24. Gary-Bobo, C.M. and A.K. Solomon (1971). Effect of geometrical and chemical constraints on water flux across artificial membranes. J. Gen. Physiol. 57:, 610.

    Article  PubMed  CAS  Google Scholar 

  25. Wang, J.H. (1965). Self-diffusion coefficients of water. J. Phys. Chem. 69:, 4412.

    Article  CAS  Google Scholar 

  26. Thau, G., R. Bloch and O. Kedem (1966). Water transport in porous and non-porous membranes. Desalination 1:, 129.

    Article  CAS  Google Scholar 

  27. Madras, S., R.L. Mcintosh and S.G. Mason (1949). A preliminary study of the permeability of cellophane to liquids. Can. J. Res. 27:, 764.

    Google Scholar 

  28. Vieira, F.L., R.I. Sha’afi and A.K. Solomon (1970). The state of water in human and dog red cell membranes. J. Gen. Physiol. 55:, 451.

    Article  PubMed  CAS  Google Scholar 

  29. MiKulecKy, D.C. (1970). The effect of position dependence of local friction coefficients on the averaged filtration and self-diffusion flows in porous membranes. Biophys. Soc. Abs. Fourteenth Annual Meeting, Baltimore, Maryland. 10, 43a.

    Google Scholar 

  30. Redwood, W.R. and D.A. Haydon (1969). Influence of temperature and membrane composition on the water permeability of lipid bilayers. J. Theoret. Biol. 22, 1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Solomon, A.K. (1972). Properties of Water in Red Cell and Synthetic Membranes. In: Kreuzer, F., Slegers, J.F.G. (eds) Biomembranes : Passive Permeability of Cell Membranes. Biomembranes, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0961-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0961-1_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0963-5

  • Online ISBN: 978-1-4684-0961-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics