Skip to main content

13C NMR Studies of the Interaction of Hb and Carbonic Anhydrase with 13CO2

  • Chapter
Protein-Metal Interactions

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 48))

Abstract

This report deals with the prospects for 13C NMR in defining the interactions of CO2 and its hydrated derivatives with small molecules and various proteins. The importance of bicarbonate ion as a buffer component is well recognized. The insolubility of many bicarbonate and carbonate salts is a central fact around which most people interested in metal-protein interactions try to work. The most common strategy is to remove or at least to avoid adding bicarbonate while setting up a metal-peptide or metal-protein study. The availability of 13C-enriched CO2 and bicarbonate and of NMR spectrometers capable of studying the 13C signals makes it convenient to reexamine the roles of these important interacting species in certain metal-protein systems of unquestionable importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bovey, F. A. (1969) Nuclear Magnetic Resonance Spectroscopy (Academic Press, New York), pp. 187–188.

    Google Scholar 

  • Caplow, M. (1969) in Carbon Dioxide: Chemical, Biochemical and Physiological Aspects, eds. Forster, R. E., Edsall, J. T., Otis, A. G., and Roughton, F. J. W. (NASA SP-188, Washington, D. C.), pp. 47–52.

    Google Scholar 

  • Dozy, A. M., Kleihaver, E. F., and Huisman, T. H. J. (1968) J. Chromatography 32, 723–727.

    Article  CAS  Google Scholar 

  • Garner, M. H., Garner, W. H., and Gurd, F. R. N. (1973) J. Biol. Chem. 248, 5451–545.

    PubMed  CAS  Google Scholar 

  • Gurd, F. R. N., Lawson, P. J., Cochran, D. W., and Wenkert, E. (1971) J. Biol. Chem. 246, 3725–3730.

    PubMed  CAS  Google Scholar 

  • Henriques, O. M. (1928) Biochem. Z. 200, 1–24.

    CAS  Google Scholar 

  • Johncock, P., Kohnstam, G., and Speight, D. (1958) J. Chem. Soc. (London) 2544-2551.

    Google Scholar 

  • Kilmartin, J. V., and Rossi-Bernardi, L. (1971) Biochem. J. 124, 31–45

    PubMed  CAS  Google Scholar 

  • Koenig, S. H., Brown, R. D., Needham, T. E., and Matwiyoff, N. A. (1973) Biochem. Biophys. Res. Comm. 53, 624–630.

    Article  PubMed  CAS  Google Scholar 

  • Kroschwitz, J. I., Winokur, M., Reich, H. J., and Roberts, J. D. (1969) J. Am. Chem. Soc. 91, 5927–5928.

    Article  CAS  Google Scholar 

  • Lindskog, S., and Coleman, J. E. (1973) Proc. Nat. Acad. Sci. USA 70, 2505–2508.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, G., Maita, T., and Nakagina, M. (1964) J. Biochem. (Tokyo) 56, 490–491.

    CAS  Google Scholar 

  • Matwiyoff, N. A. and Needham, T. E. (1972) Biochem. Biophys. Res. Commun. 49, 1158–1164.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, J. S., Keim, P., and Gurd, F. R. N. (1974) in preparation.

    Google Scholar 

  • Morrow, J. S., Keim, P., Visscher, R. B., Marshall, R. C., and Gurd, F. R. N. (1973) Proc. Nat. Acad. Sci. USA 70, 1414–1418.

    Article  PubMed  CAS  Google Scholar 

  • Needleman, S. B., ed. (1970) Protein Sequence Determination, Springer-Verlag, New York, pp. 82–83.

    Google Scholar 

  • Patterson, A., Jr., and Ettinger, R. (1960) Z. Elektrochem. 64, 98–110.

    CAS  Google Scholar 

  • Rossi-Bernardi, L., Pace, M., Roughton, F. J. W., and Van Kempen, L. (1969) in Carbon Dioxide: Chemical, Biochemical and Physiological Aspects, eds. Forster, R. E., Edsall, J. T. Otis, A.G., and Roughton, F. J. W. (NASA SP-188, Washington, D. C.), PP. 65–71.

    Google Scholar 

  • Roughton, F. J. W. (1964 in Handbook of Physiology, Section 3:Respiration, eds. Fenn, W. O. and Rahn, N. (American Physiological Society, Washington, D. C.), Vol. 1, p. 767.

    Google Scholar 

  • Roughton, F. J. W., and Rossi-Bernardi, L. (1966) Proc. Roy. Soc. (London) B164, 381–400.

    Google Scholar 

  • Shearer, W. T., Bradshaw, R. A., Gurd, F. R. N., and Peters, T. (1967) J. Biol. Chem. 242, 5451–5459.

    PubMed  CAS  Google Scholar 

  • Stadie, W. C., and O’Brien, H. (1936) J. Biol. Chem. 112, 723–758.

    CAS  Google Scholar 

  • Stadie, W. C. and O’Brien, H. (1937) J. Biol. Chem. 117, 439–470.

    CAS  Google Scholar 

  • Warner, R. C., and Weber, I. (1953) J. Amer. Chem. Soc. 75, 5094–5101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Gurd, F.R.N., Morrow, J.S., Keim, P., Visscher, R.B., Marshall, R. (1974). 13C NMR Studies of the Interaction of Hb and Carbonic Anhydrase with 13CO2 . In: Friedman, M. (eds) Protein-Metal Interactions. Advances in Experimental Medicine and Biology, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0943-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0943-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0945-1

  • Online ISBN: 978-1-4684-0943-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics