Copper and Amine Oxidases in Connective Tissue Metabolism

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 48)


That copper is an essential biocatalyst has been recognized for nearly a half century but its critical role in connective tissue metabolism has come into focus only in recent years. It is now clear that copper plays a role in the crosslinking of the two important connective tissue proteins, elastin and collagen. The gross pathology that results from this copper deficiency is most dramatic when it occurs in large arteries and results in spontaneous and massive hemorrhage. Because of this unique pathology and the importance of a sound vasculature to human health, our research has been focused on the aorta. The effect of copper deficiency on the integrity of collagen and elastin and the activity of the amine oxidases in this organ has been investigated. This paper summarizes earlier observations and presents recent results relating to a copper-dependent amine oxidase which plays a key role in the crosslinking process.


Amine Oxidase Copper Deficiency Aortic Tissue Lysyl Oxidase Bovine Aorta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asling, C. W. and Hurley, L. S. (1963). Clinical Orthopaedics 23:213.Google Scholar
  2. Bird, D. W., Savage, J. E. and O’Dell, B. L. (1966). Proc. Soc. Exptl. Biol. Med. 123:250.Google Scholar
  3. Blaschko, H. and Buffoni, F., Weissman, N., Carnes, W. H. and Coulson, W. F. (1965). Biochem. J. 96:4C.PubMedGoogle Scholar
  4. Carnes, W. H. (1968). International Review of Connective Tissue Research, edited by D. A. Hall. New York: Academic Press, Vol. 4.Google Scholar
  5. Chou, W. S., Savage, J. E. and O’Dell, B. L. (1968). Proc. Soc. Exp. Biol. Med. 128:948.Google Scholar
  6. Chou, W. S., Savage, J. E. and O’Dell, B. L. (1969). J. Biol. Chem. 244:5785.PubMedGoogle Scholar
  7. Franzblau, C., Sinex, F., Faris, B. and Lampidis, R. (1965). Biochem. Biophys. Res. Commun. 21:575.PubMedCrossRefGoogle Scholar
  8. Gallop, P. M., Blumenfeld, O. O. and Seifter, S. (1972). Ann. Rev. Biochem. 41:617.PubMedCrossRefGoogle Scholar
  9. Harris, E. D. and O’Dell, B. L. (1972). Biochem. Biophys. Res. Commun. 48:1173.PubMedCrossRefGoogle Scholar
  10. Harris, E. D. and O’Dell, B. L. (1973). Manuscript in preparation for Biochem. Biophys. Acta.Google Scholar
  11. Miller, E. J., Martin, G. R., Mecca, C. E., and Piez, K. A. (1965). J. Biol. Chem. 240:3623.PubMedGoogle Scholar
  12. Mills, C. F., Dalgarno, A. C. and Williams, R. B. (1966). Biochem. Biophys. Res. Commun. 24:537.PubMedCrossRefGoogle Scholar
  13. O’Dell, B. L., Hardwick, B. C., Reynolds, G. and Savage, J. E. (1961). Proc. Soc. Exptl. Biol. Med. 108:402.Google Scholar
  14. O’Dell, B. L., Bird, D. W., Ruggles, D. L. and Savage, J. E. (1966a). J. Nutrition 88:9.Google Scholar
  15. O’Dell, B. L., Elsden, D. F., Thomas, J., Partridge, S. M., Smith, R. H. and Palmer, R. (1966b). Nature 209:401.PubMedCrossRefGoogle Scholar
  16. Partridge, S. M., Elsden, D. F. and Thomas, J. (1963). Nature 197:1297.PubMedCrossRefGoogle Scholar
  17. Partridge, S. M., Elsden, D. F., Thomas, J., Dorfman, A., Telser, A. and Ho, P. L. (1966). Nature 209:399.PubMedCrossRefGoogle Scholar
  18. Pinnell, S. R. and Martin, G. R. (1968). Proc. Natl. Acad. Sci. U.S. 61:708.CrossRefGoogle Scholar
  19. Roensch, L. F., Savage, J. E. and O’Dell, B. L. (1972). Proc. Fed. Am. Soc. Exp. Biol. 31:480.Google Scholar
  20. Roensch, L. F. and O’Dell, B. L. (1973). Manuscript in preparation from Roensch, PhD Thesis, University of Missouri, 1973.Google Scholar
  21. Rucker, R. B., Parker, H. E., and Rogler, J. C. (1969). J. Nutrition 98:57.Google Scholar
  22. Rucker, R. B. and O’Dell, B. L. (1971). Biochem. Biophys. Acta 235:32.PubMedGoogle Scholar
  23. Sandberg, L. B., Weissman, N. and Smith, D. W. (1969). Biochem. 8:2940.CrossRefGoogle Scholar
  24. Savage, J. E., Bird, D. W., Reynolds, G. and O’Dell, B. L. (1966). J. Nutrition 88:15.Google Scholar
  25. Shields, G. S., Coulson, W. F., Kimball, D. A., Carnes, W. H., Cartwright, G. E. and Wintrobe, M. M. (1962). Am. J. Pathol. 41:603.PubMedGoogle Scholar
  26. Siegel, R. C. and Martin, G. R. (1970a). J. Biol. Chem. 245:1653.PubMedGoogle Scholar
  27. Siegel, R. C., Pinnell, S. R. and Martin, G. R. (1970b). Biochemistry 9:4486.PubMedCrossRefGoogle Scholar
  28. Smith, D. W., Brown, D. W. and Carnes, W. H. (1972). J. Biol. Chem. 247:2427.PubMedGoogle Scholar
  29. Starcher, B., Hill, C. H. and Matrone, G. (1964). J. Nutrition 82:318.Google Scholar
  30. Sykes, B. C. and Partridge, S. M. (1972). Biochem. J. 130:1171.PubMedGoogle Scholar
  31. Tanzer, M. L., Housley, T., Berube, L., Fairweather, R., Franzblau, C. and Gallop, P. M. (1973). J. Biol. Chem. 248:393.PubMedGoogle Scholar
  32. Weissman, N., Shields, G. S. and Carnes, W. H. (1963). J. Biol. Chem. 238:3115.PubMedGoogle Scholar
  33. Yasunobu, K. T. and Yamada, H. (1961) in Snell, E. E. Intern Symp. on Chemical and Biological Aspects of Pyridoxal Catalysis. Rome. Academic Press, New York 1962, p. 453.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  1. 1.Department of Agricultural ChemistryUniversity of MissouriColumbiaUSA

Personalised recommendations